Source code for tianshou.policy.modelfree.td3

import torch
import numpy as np
from copy import deepcopy
import torch.nn.functional as F
from typing import Dict, Tuple, Optional

from tianshou.policy import DDPGPolicy
from tianshou.data import Batch, ReplayBuffer
from tianshou.exploration import BaseNoise, GaussianNoise


[docs]class TD3Policy(DDPGPolicy): """Implementation of Twin Delayed Deep Deterministic Policy Gradient, arXiv:1802.09477 :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.optim.Optimizer actor_optim: the optimizer for actor network. :param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a)) :param torch.optim.Optimizer critic1_optim: the optimizer for the first critic network. :param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a)) :param torch.optim.Optimizer critic2_optim: the optimizer for the second critic network. :param float tau: param for soft update of the target network, defaults to 0.005. :param float gamma: discount factor, in [0, 1], defaults to 0.99. :param float exploration_noise: the exploration noise, add to the action, defaults to ``GaussianNoise(sigma=0.1)`` :param float policy_noise: the noise used in updating policy network, default to 0.2. :param int update_actor_freq: the update frequency of actor network, default to 2. :param float noise_clip: the clipping range used in updating policy network, default to 0.5. :param action_range: the action range (minimum, maximum). :type action_range: (float, float) :param bool reward_normalization: normalize the reward to Normal(0, 1), defaults to ``False``. :param bool ignore_done: ignore the done flag while training the policy, defaults to ``False``. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__(self, actor: torch.nn.Module, actor_optim: torch.optim.Optimizer, critic1: torch.nn.Module, critic1_optim: torch.optim.Optimizer, critic2: torch.nn.Module, critic2_optim: torch.optim.Optimizer, tau: float = 0.005, gamma: float = 0.99, exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1), policy_noise: float = 0.2, update_actor_freq: int = 2, noise_clip: float = 0.5, action_range: Optional[Tuple[float, float]] = None, reward_normalization: bool = False, ignore_done: bool = False, estimation_step: int = 1, **kwargs) -> None: super().__init__(actor, actor_optim, None, None, tau, gamma, exploration_noise, action_range, reward_normalization, ignore_done, estimation_step, **kwargs) self.critic1, self.critic1_old = critic1, deepcopy(critic1) self.critic1_old.eval() self.critic1_optim = critic1_optim self.critic2, self.critic2_old = critic2, deepcopy(critic2) self.critic2_old.eval() self.critic2_optim = critic2_optim self._policy_noise = policy_noise self._freq = update_actor_freq self._noise_clip = noise_clip self._cnt = 0 self._last = 0
[docs] def train(self, mode=True) -> torch.nn.Module: self.training = mode self.actor.train(mode) self.critic1.train(mode) self.critic2.train(mode) return self
[docs] def sync_weight(self) -> None: for o, n in zip(self.actor_old.parameters(), self.actor.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) for o, n in zip( self.critic1_old.parameters(), self.critic1.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau) for o, n in zip( self.critic2_old.parameters(), self.critic2.parameters()): o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def _target_q(self, buffer: ReplayBuffer, indice: np.ndarray) -> torch.Tensor: batch = buffer[indice] # batch.obs: s_{t+n} with torch.no_grad(): a_ = self(batch, model='actor_old', input='obs_next').act dev = a_.device noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise if self._noise_clip > 0: noise = noise.clamp(-self._noise_clip, self._noise_clip) a_ += noise a_ = a_.clamp(self._range[0], self._range[1]) target_q = torch.min( self.critic1_old(batch.obs_next, a_), self.critic2_old(batch.obs_next, a_)) return target_q
[docs] def learn(self, batch: Batch, **kwargs) -> Dict[str, float]: # critic 1 current_q1 = self.critic1(batch.obs, batch.act) target_q = batch.returns[:, None] critic1_loss = F.mse_loss(current_q1, target_q) self.critic1_optim.zero_grad() critic1_loss.backward() self.critic1_optim.step() # critic 2 current_q2 = self.critic2(batch.obs, batch.act) critic2_loss = F.mse_loss(current_q2, target_q) self.critic2_optim.zero_grad() critic2_loss.backward() self.critic2_optim.step() if self._cnt % self._freq == 0: actor_loss = -self.critic1( batch.obs, self(batch, eps=0).act).mean() self.actor_optim.zero_grad() actor_loss.backward() self._last = actor_loss.item() self.actor_optim.step() self.sync_weight() self._cnt += 1 return { 'loss/actor': self._last, 'loss/critic1': critic1_loss.item(), 'loss/critic2': critic2_loss.item(), }