Source code for tianshou.policy.modelfree.ppo

import torch
import numpy as np
from torch import nn
from typing import Dict, List, Tuple, Union, Optional

from tianshou.policy import PGPolicy
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as


[docs]class PPOPolicy(PGPolicy): r"""Implementation of Proximal Policy Optimization. arXiv:1707.06347 :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.nn.Module critic: the critic network. (s -> V(s)) :param torch.optim.Optimizer optim: the optimizer for actor and critic network. :param torch.distributions.Distribution dist_fn: for computing the action. :param float discount_factor: in [0, 1], defaults to 0.99. :param float max_grad_norm: clipping gradients in back propagation, defaults to ``None``. :param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original paper, defaults to 0.2. :param float vf_coef: weight for value loss, defaults to 0.5. :param float ent_coef: weight for entropy loss, defaults to 0.01. :param action_range: the action range (minimum, maximum). :type action_range: (float, float) :param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation, defaults to 0.95. :param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c > 1 is a constant indicating the lower bound, defaults to 5.0 (set ``None`` if you do not want to use it). :param bool value_clip: a parameter mentioned in arXiv:1811.02553 Sec. 4.1, defaults to ``True``. :param bool reward_normalization: normalize the returns to Normal(0, 1), defaults to ``True``. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__(self, actor: torch.nn.Module, critic: torch.nn.Module, optim: torch.optim.Optimizer, dist_fn: torch.distributions.Distribution, discount_factor: float = 0.99, max_grad_norm: Optional[float] = None, eps_clip: float = .2, vf_coef: float = .5, ent_coef: float = .01, action_range: Optional[Tuple[float, float]] = None, gae_lambda: float = 0.95, dual_clip: Optional[float] = None, value_clip: bool = True, reward_normalization: bool = True, **kwargs) -> None: super().__init__(None, None, dist_fn, discount_factor, **kwargs) self._max_grad_norm = max_grad_norm self._eps_clip = eps_clip self._w_vf = vf_coef self._w_ent = ent_coef self._range = action_range self.actor = actor self.critic = critic self.optim = optim self._batch = 64 assert 0 <= gae_lambda <= 1, 'GAE lambda should be in [0, 1].' self._lambda = gae_lambda assert dual_clip is None or dual_clip > 1, \ 'Dual-clip PPO parameter should greater than 1.' self._dual_clip = dual_clip self._value_clip = value_clip self._rew_norm = reward_normalization
[docs] def process_fn(self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray) -> Batch: if self._rew_norm: mean, std = batch.rew.mean(), batch.rew.std() if not np.isclose(std, 0): batch.rew = (batch.rew - mean) / std if self._lambda in [0, 1]: return self.compute_episodic_return( batch, None, gamma=self._gamma, gae_lambda=self._lambda) v_ = [] with torch.no_grad(): for b in batch.split(self._batch, shuffle=False): v_.append(self.critic(b.obs_next)) v_ = to_numpy(torch.cat(v_, dim=0)) return self.compute_episodic_return( batch, v_, gamma=self._gamma, gae_lambda=self._lambda)
[docs] def forward(self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs) -> Batch: """Compute action over the given batch data. :return: A :class:`~tianshou.data.Batch` which has 4 keys: * ``act`` the action. * ``logits`` the network's raw output. * ``dist`` the action distribution. * ``state`` the hidden state. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ logits, h = self.actor(batch.obs, state=state, info=batch.info) if isinstance(logits, tuple): dist = self.dist_fn(*logits) else: dist = self.dist_fn(logits) act = dist.sample() if self._range: act = act.clamp(self._range[0], self._range[1]) return Batch(logits=logits, act=act, state=h, dist=dist)
[docs] def learn(self, batch: Batch, batch_size: int, repeat: int, **kwargs) -> Dict[str, List[float]]: self._batch = batch_size losses, clip_losses, vf_losses, ent_losses = [], [], [], [] v = [] old_log_prob = [] with torch.no_grad(): for b in batch.split(batch_size, shuffle=False): v.append(self.critic(b.obs)) old_log_prob.append(self(b).dist.log_prob( to_torch_as(b.act, v[0]))) batch.v = torch.cat(v, dim=0) # old value batch.act = to_torch_as(batch.act, v[0]) batch.logp_old = torch.cat(old_log_prob, dim=0) batch.returns = to_torch_as( batch.returns, v[0]).reshape(batch.v.shape) if self._rew_norm: mean, std = batch.returns.mean(), batch.returns.std() if not np.isclose(std.item(), 0): batch.returns = (batch.returns - mean) / std batch.adv = batch.returns - batch.v if self._rew_norm: mean, std = batch.adv.mean(), batch.adv.std() if not np.isclose(std.item(), 0): batch.adv = (batch.adv - mean) / std for _ in range(repeat): for b in batch.split(batch_size): dist = self(b).dist value = self.critic(b.obs) ratio = (dist.log_prob(b.act) - b.logp_old).exp().float() surr1 = ratio * b.adv surr2 = ratio.clamp( 1. - self._eps_clip, 1. + self._eps_clip) * b.adv if self._dual_clip: clip_loss = -torch.max(torch.min(surr1, surr2), self._dual_clip * b.adv).mean() else: clip_loss = -torch.min(surr1, surr2).mean() clip_losses.append(clip_loss.item()) if self._value_clip: v_clip = b.v + (value - b.v).clamp( -self._eps_clip, self._eps_clip) vf1 = (b.returns - value).pow(2) vf2 = (b.returns - v_clip).pow(2) vf_loss = .5 * torch.max(vf1, vf2).mean() else: vf_loss = .5 * (b.returns - value).pow(2).mean() vf_losses.append(vf_loss.item()) e_loss = dist.entropy().mean() ent_losses.append(e_loss.item()) loss = clip_loss + self._w_vf * vf_loss - self._w_ent * e_loss losses.append(loss.item()) self.optim.zero_grad() loss.backward() nn.utils.clip_grad_norm_(list( self.actor.parameters()) + list(self.critic.parameters()), self._max_grad_norm) self.optim.step() return { 'loss': losses, 'loss/clip': clip_losses, 'loss/vf': vf_losses, 'loss/ent': ent_losses, }