Source code for tianshou.policy.base

import torch
import numpy as np
from torch import nn
from abc import ABC, abstractmethod
from typing import Dict, List, Union, Optional, Callable

from tianshou.data import Batch, ReplayBuffer, to_torch_as


[docs]class BasePolicy(ABC, nn.Module): """Tianshou aims to modularizing RL algorithms. It comes into several classes of policies in Tianshou. All of the policy classes must inherit :class:`~tianshou.policy.BasePolicy`. A policy class typically has four parts: * :meth:`~tianshou.policy.BasePolicy.__init__`: initialize the policy, \ including coping the target network and so on; * :meth:`~tianshou.policy.BasePolicy.forward`: compute action with given \ observation; * :meth:`~tianshou.policy.BasePolicy.process_fn`: pre-process data from \ the replay buffer (this function can interact with replay buffer); * :meth:`~tianshou.policy.BasePolicy.learn`: update policy with a given \ batch of data. Most of the policy needs a neural network to predict the action and an optimizer to optimize the policy. The rules of self-defined networks are: 1. Input: observation ``obs`` (may be a ``numpy.ndarray``, a \ ``torch.Tensor``, a dict or any others), hidden state ``state`` (for \ RNN usage), and other information ``info`` provided by the \ environment. 2. Output: some ``logits``, the next hidden state ``state``, and the \ intermediate result during policy forwarding procedure ``policy``. The\ ``logits`` could be a tuple instead of a ``torch.Tensor``. It depends \ on how the policy process the network output. For example, in PPO, the\ return of the network might be ``(mu, sigma), state`` for Gaussian \ policy. The ``policy`` can be a Batch of torch.Tensor or other things,\ which will be stored in the replay buffer, and can be accessed in the \ policy update process (e.g. in ``policy.learn()``, the \ ``batch.policy`` is what you need). Since :class:`~tianshou.policy.BasePolicy` inherits ``torch.nn.Module``, you can use :class:`~tianshou.policy.BasePolicy` almost the same as ``torch.nn.Module``, for instance, loading and saving the model: :: torch.save(policy.state_dict(), 'policy.pth') policy.load_state_dict(torch.load('policy.pth')) """ def __init__(self, **kwargs) -> None: super().__init__() self.observation_space = kwargs.get('observation_space') self.action_space = kwargs.get('action_space')
[docs] def process_fn(self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray) -> Batch: """Pre-process the data from the provided replay buffer. Check out :ref:`policy_concept` for more information. """ return batch
[docs] @abstractmethod def forward(self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs) -> Batch: """Compute action over the given batch data. :return: A :class:`~tianshou.data.Batch` which MUST have the following\ keys: * ``act`` an numpy.ndarray or a torch.Tensor, the action over \ given batch data. * ``state`` a dict, an numpy.ndarray or a torch.Tensor, the \ internal state of the policy, ``None`` as default. Other keys are user-defined. It depends on the algorithm. For example, :: # some code return Batch(logits=..., act=..., state=None, dist=...) After version >= 0.2.3, the keyword "policy" is reserverd and the corresponding data will be stored into the replay buffer in numpy. For instance, :: # some code return Batch(..., policy=Batch(log_prob=dist.log_prob(act))) # and in the sampled data batch, you can directly call # batch.policy.log_prob to get your data, although it is stored in # np.ndarray. """ pass
[docs] @abstractmethod def learn(self, batch: Batch, **kwargs ) -> Dict[str, Union[float, List[float]]]: """Update policy with a given batch of data. :return: A dict which includes loss and its corresponding label. """ pass
[docs] @staticmethod def compute_episodic_return( batch: Batch, v_s_: Optional[Union[np.ndarray, torch.Tensor]] = None, gamma: float = 0.99, gae_lambda: float = 0.95) -> Batch: """Compute returns over given full-length episodes, including the implementation of Generalized Advantage Estimator (arXiv:1506.02438). :param batch: a data batch which contains several full-episode data chronologically. :type batch: :class:`~tianshou.data.Batch` :param v_s_: the value function of all next states :math:`V(s')`. :type v_s_: numpy.ndarray :param float gamma: the discount factor, should be in [0, 1], defaults to 0.99. :param float gae_lambda: the parameter for Generalized Advantage Estimation, should be in [0, 1], defaults to 0.95. :return: a Batch. The result will be stored in batch.returns. """ if v_s_ is None: v_s_ = batch.rew * 0. else: if not isinstance(v_s_, np.ndarray): v_s_ = np.array(v_s_, np.float) v_s_ = v_s_.reshape(batch.rew.shape) returns = np.roll(v_s_, 1, axis=0) m = (1. - batch.done) * gamma delta = batch.rew + v_s_ * m - returns m *= gae_lambda gae = 0. for i in range(len(batch.rew) - 1, -1, -1): gae = delta[i] + m[i] * gae returns[i] += gae batch.returns = returns return batch
[docs] @staticmethod def compute_nstep_return( batch: Batch, buffer: ReplayBuffer, indice: np.ndarray, target_q_fn: Callable[[ReplayBuffer, np.ndarray], torch.Tensor], gamma: float = 0.99, n_step: int = 1, rew_norm: bool = False ) -> np.ndarray: r"""Compute n-step return for Q-learning targets: .. math:: G_t = \sum_{i = t}^{t + n - 1} \gamma^{i - t}(1 - d_i)r_i + \gamma^n (1 - d_{t + n}) Q_{\mathrm{target}}(s_{t + n}) , where :math:`\gamma` is the discount factor, :math:`\gamma \in [0, 1]`, :math:`d_t` is the done flag of step :math:`t`. :param batch: a data batch, which is equal to buffer[indice]. :type batch: :class:`~tianshou.data.Batch` :param buffer: a data buffer which contains several full-episode data chronologically. :type buffer: :class:`~tianshou.data.ReplayBuffer` :param indice: sampled timestep. :type indice: numpy.ndarray :param function target_q_fn: a function receives :math:`t+n-1` step's data and compute target Q value. :param float gamma: the discount factor, should be in [0, 1], defaults to 0.99. :param int n_step: the number of estimation step, should be an int greater than 0, defaults to 1. :param bool rew_norm: normalize the reward to Normal(0, 1), defaults to ``False``. :return: a Batch. The result will be stored in batch.returns as a torch.Tensor with shape (bsz, ). """ if rew_norm: bfr = buffer.rew[:min(len(buffer), 1000)] # avoid large buffer mean, std = bfr.mean(), bfr.std() if np.isclose(std, 0): mean, std = 0, 1 else: mean, std = 0, 1 returns = np.zeros_like(indice) gammas = np.zeros_like(indice) + n_step done, rew, buf_len = buffer.done, buffer.rew, len(buffer) for n in range(n_step - 1, -1, -1): now = (indice + n) % buf_len gammas[done[now] > 0] = n returns[done[now] > 0] = 0 returns = (rew[now] - mean) / std + gamma * returns terminal = (indice + n_step - 1) % buf_len target_q = target_q_fn(buffer, terminal).squeeze() target_q[gammas != n_step] = 0 returns = to_torch_as(returns, target_q) gammas = to_torch_as(gamma ** gammas, target_q) batch.returns = target_q * gammas + returns return batch