Source code for tianshou.policy.modelfree.sac

from copy import deepcopy
from typing import Any, Dict, Optional, Tuple, Union

import numpy as np
import torch
from torch.distributions import Independent, Normal

from tianshou.data import Batch, ReplayBuffer
from tianshou.exploration import BaseNoise
from tianshou.policy import DDPGPolicy


[docs]class SACPolicy(DDPGPolicy): """Implementation of Soft Actor-Critic. arXiv:1812.05905. :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.optim.Optimizer actor_optim: the optimizer for actor network. :param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a)) :param torch.optim.Optimizer critic1_optim: the optimizer for the first critic network. :param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a)) :param torch.optim.Optimizer critic2_optim: the optimizer for the second critic network. :param float tau: param for soft update of the target network. Default to 0.005. :param float gamma: discount factor, in [0, 1]. Default to 0.99. :param (float, torch.Tensor, torch.optim.Optimizer) or float alpha: entropy regularization coefficient. Default to 0.2. If a tuple (target_entropy, log_alpha, alpha_optim) is provided, then alpha is automatically tuned. :param bool reward_normalization: normalize the reward to Normal(0, 1). Default to False. :param BaseNoise exploration_noise: add a noise to action for exploration. Default to None. This is useful when solving hard-exploration problem. :param bool deterministic_eval: whether to use deterministic action (mean of Gaussian policy) instead of stochastic action sampled by the policy. Default to True. :param bool action_scaling: whether to map actions from range [-1, 1] to range [action_spaces.low, action_spaces.high]. Default to True. :param str action_bound_method: method to bound action to range [-1, 1], can be either "clip" (for simply clipping the action) or empty string for no bounding. Default to "clip". :param Optional[gym.Space] action_space: env's action space, mandatory if you want to use option "action_scaling" or "action_bound_method". Default to None. :param lr_scheduler: a learning rate scheduler that adjusts the learning rate in optimizer in each policy.update(). Default to None (no lr_scheduler). .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, actor: torch.nn.Module, actor_optim: torch.optim.Optimizer, critic1: torch.nn.Module, critic1_optim: torch.optim.Optimizer, critic2: torch.nn.Module, critic2_optim: torch.optim.Optimizer, tau: float = 0.005, gamma: float = 0.99, alpha: Union[float, Tuple[float, torch.Tensor, torch.optim.Optimizer]] = 0.2, reward_normalization: bool = False, estimation_step: int = 1, exploration_noise: Optional[BaseNoise] = None, deterministic_eval: bool = True, **kwargs: Any, ) -> None: super().__init__( None, None, None, None, tau, gamma, exploration_noise, reward_normalization, estimation_step, **kwargs ) self.actor, self.actor_optim = actor, actor_optim self.critic1, self.critic1_old = critic1, deepcopy(critic1) self.critic1_old.eval() self.critic1_optim = critic1_optim self.critic2, self.critic2_old = critic2, deepcopy(critic2) self.critic2_old.eval() self.critic2_optim = critic2_optim self._is_auto_alpha = False self._alpha: Union[float, torch.Tensor] if isinstance(alpha, tuple): self._is_auto_alpha = True self._target_entropy, self._log_alpha, self._alpha_optim = alpha assert alpha[1].shape == torch.Size([1]) and alpha[1].requires_grad self._alpha = self._log_alpha.detach().exp() else: self._alpha = alpha self._deterministic_eval = deterministic_eval self.__eps = np.finfo(np.float32).eps.item()
[docs] def train(self, mode: bool = True) -> "SACPolicy": self.training = mode self.actor.train(mode) self.critic1.train(mode) self.critic2.train(mode) return self
[docs] def sync_weight(self) -> None: self.soft_update(self.critic1_old, self.critic1, self.tau) self.soft_update(self.critic2_old, self.critic2, self.tau)
[docs] def forward( # type: ignore self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, input: str = "obs", **kwargs: Any, ) -> Batch: obs = batch[input] logits, hidden = self.actor(obs, state=state, info=batch.info) assert isinstance(logits, tuple) dist = Independent(Normal(*logits), 1) if self._deterministic_eval and not self.training: act = logits[0] else: act = dist.rsample() log_prob = dist.log_prob(act).unsqueeze(-1) # apply correction for Tanh squashing when computing logprob from Gaussian # You can check out the original SAC paper (arXiv 1801.01290): Eq 21. # in appendix C to get some understanding of this equation. squashed_action = torch.tanh(act) log_prob = log_prob - torch.log((1 - squashed_action.pow(2)) + self.__eps).sum(-1, keepdim=True) return Batch( logits=logits, act=squashed_action, state=hidden, dist=dist, log_prob=log_prob )
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor: batch = buffer[indices] # batch.obs: s_{t+n} obs_next_result = self(batch, input="obs_next") act_ = obs_next_result.act target_q = torch.min( self.critic1_old(batch.obs_next, act_), self.critic2_old(batch.obs_next, act_), ) - self._alpha * obs_next_result.log_prob return target_q
[docs] def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]: # critic 1&2 td1, critic1_loss = self._mse_optimizer( batch, self.critic1, self.critic1_optim ) td2, critic2_loss = self._mse_optimizer( batch, self.critic2, self.critic2_optim ) batch.weight = (td1 + td2) / 2.0 # prio-buffer # actor obs_result = self(batch) act = obs_result.act current_q1a = self.critic1(batch.obs, act).flatten() current_q2a = self.critic2(batch.obs, act).flatten() actor_loss = ( self._alpha * obs_result.log_prob.flatten() - torch.min(current_q1a, current_q2a) ).mean() self.actor_optim.zero_grad() actor_loss.backward() self.actor_optim.step() if self._is_auto_alpha: log_prob = obs_result.log_prob.detach() + self._target_entropy # please take a look at issue #258 if you'd like to change this line alpha_loss = -(self._log_alpha * log_prob).mean() self._alpha_optim.zero_grad() alpha_loss.backward() self._alpha_optim.step() self._alpha = self._log_alpha.detach().exp() self.sync_weight() result = { "loss/actor": actor_loss.item(), "loss/critic1": critic1_loss.item(), "loss/critic2": critic2_loss.item(), } if self._is_auto_alpha: result["loss/alpha"] = alpha_loss.item() result["alpha"] = self._alpha.item() # type: ignore return result