Source code for tianshou.policy.modelbased.icm

from typing import Any, Dict, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F

from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch
from tianshou.policy import BasePolicy
from tianshou.utils.net.discrete import IntrinsicCuriosityModule


[docs]class ICMPolicy(BasePolicy): """Implementation of Intrinsic Curiosity Module. arXiv:1705.05363. :param BasePolicy policy: a base policy to add ICM to. :param IntrinsicCuriosityModule model: the ICM model. :param torch.optim.Optimizer optim: a torch.optim for optimizing the model. :param float lr_scale: the scaling factor for ICM learning. :param float forward_loss_weight: the weight for forward model loss. :param lr_scheduler: a learning rate scheduler that adjusts the learning rate in optimizer in each policy.update(). Default to None (no lr_scheduler). .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, policy: BasePolicy, model: IntrinsicCuriosityModule, optim: torch.optim.Optimizer, lr_scale: float, reward_scale: float, forward_loss_weight: float, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.policy = policy self.model = model self.optim = optim self.lr_scale = lr_scale self.reward_scale = reward_scale self.forward_loss_weight = forward_loss_weight
[docs] def train(self, mode: bool = True) -> "ICMPolicy": """Set the module in training mode.""" self.policy.train(mode) self.training = mode self.model.train(mode) return self
[docs] def forward( self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> Batch: """Compute action over the given batch data by inner policy. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ return self.policy.forward(batch, state, **kwargs)
[docs] def exploration_noise(self, act: Union[np.ndarray, Batch], batch: Batch) -> Union[np.ndarray, Batch]: return self.policy.exploration_noise(act, batch)
[docs] def set_eps(self, eps: float) -> None: """Set the eps for epsilon-greedy exploration.""" if hasattr(self.policy, "set_eps"): self.policy.set_eps(eps) # type: ignore else: raise NotImplementedError()
[docs] def process_fn( self, batch: Batch, buffer: ReplayBuffer, indices: np.ndarray ) -> Batch: """Pre-process the data from the provided replay buffer. Used in :meth:`update`. Check out :ref:`process_fn` for more information. """ mse_loss, act_hat = self.model(batch.obs, batch.act, batch.obs_next) batch.policy = Batch(orig_rew=batch.rew, act_hat=act_hat, mse_loss=mse_loss) batch.rew += to_numpy(mse_loss * self.reward_scale) return self.policy.process_fn(batch, buffer, indices)
[docs] def post_process_fn( self, batch: Batch, buffer: ReplayBuffer, indices: np.ndarray ) -> None: """Post-process the data from the provided replay buffer. Typical usage is to update the sampling weight in prioritized experience replay. Used in :meth:`update`. """ self.policy.post_process_fn(batch, buffer, indices) batch.rew = batch.policy.orig_rew # restore original reward
[docs] def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]: res = self.policy.learn(batch, **kwargs) self.optim.zero_grad() act_hat = batch.policy.act_hat act = to_torch(batch.act, dtype=torch.long, device=act_hat.device) inverse_loss = F.cross_entropy(act_hat, act).mean() forward_loss = batch.policy.mse_loss.mean() loss = ( (1 - self.forward_loss_weight) * inverse_loss + self.forward_loss_weight * forward_loss ) * self.lr_scale loss.backward() self.optim.step() res.update( { "loss/icm": loss.item(), "loss/icm/forward": forward_loss.item(), "loss/icm/inverse": inverse_loss.item() } ) return res