Source code for tianshou.policy.imitation.discrete_crr

from copy import deepcopy
from typing import Any, Dict

import torch
import torch.nn.functional as F
from torch.distributions import Categorical

from tianshou.data import Batch, to_torch, to_torch_as
from tianshou.policy.modelfree.pg import PGPolicy


[docs]class DiscreteCRRPolicy(PGPolicy): r"""Implementation of discrete Critic Regularized Regression. arXiv:2006.15134. :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.nn.Module critic: the action-value critic (i.e., Q function) network. (s -> Q(s, \*)) :param torch.optim.Optimizer optim: a torch.optim for optimizing the model. :param float discount_factor: in [0, 1]. Default to 0.99. :param str policy_improvement_mode: type of the weight function f. Possible values: "binary"/"exp"/"all". Default to "exp". :param float ratio_upper_bound: when policy_improvement_mode is "exp", the value of the exp function is upper-bounded by this parameter. Default to 20. :param float beta: when policy_improvement_mode is "exp", this is the denominator of the exp function. Default to 1. :param float min_q_weight: weight for CQL loss/regularizer. Default to 10. :param int target_update_freq: the target network update frequency (0 if you do not use the target network). Default to 0. :param bool reward_normalization: normalize the reward to Normal(0, 1). Default to False. :param lr_scheduler: a learning rate scheduler that adjusts the learning rate in optimizer in each policy.update(). Default to None (no lr_scheduler). .. seealso:: Please refer to :class:`~tianshou.policy.PGPolicy` for more detailed explanation. """ def __init__( self, actor: torch.nn.Module, critic: torch.nn.Module, optim: torch.optim.Optimizer, discount_factor: float = 0.99, policy_improvement_mode: str = "exp", ratio_upper_bound: float = 20.0, beta: float = 1.0, min_q_weight: float = 10.0, target_update_freq: int = 0, reward_normalization: bool = False, **kwargs: Any, ) -> None: super().__init__( actor, optim, lambda x: Categorical(logits=x), # type: ignore discount_factor, reward_normalization, **kwargs, ) self.critic = critic self._target = target_update_freq > 0 self._freq = target_update_freq self._iter = 0 if self._target: self.actor_old = deepcopy(self.actor) self.actor_old.eval() self.critic_old = deepcopy(self.critic) self.critic_old.eval() else: self.actor_old = self.actor self.critic_old = self.critic assert policy_improvement_mode in ["exp", "binary", "all"] self._policy_improvement_mode = policy_improvement_mode self._ratio_upper_bound = ratio_upper_bound self._beta = beta self._min_q_weight = min_q_weight
[docs] def sync_weight(self) -> None: self.actor_old.load_state_dict(self.actor.state_dict()) self.critic_old.load_state_dict(self.critic.state_dict())
[docs] def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]: # type: ignore if self._target and self._iter % self._freq == 0: self.sync_weight() self.optim.zero_grad() q_t = self.critic(batch.obs) act = to_torch(batch.act, dtype=torch.long, device=q_t.device) qa_t = q_t.gather(1, act.unsqueeze(1)) # Critic loss with torch.no_grad(): target_a_t, _ = self.actor_old(batch.obs_next) target_m = Categorical(logits=target_a_t) q_t_target = self.critic_old(batch.obs_next) rew = to_torch_as(batch.rew, q_t_target) expected_target_q = (q_t_target * target_m.probs).sum(-1, keepdim=True) expected_target_q[batch.done > 0] = 0.0 target = rew.unsqueeze(1) + self._gamma * expected_target_q critic_loss = 0.5 * F.mse_loss(qa_t, target) # Actor loss act_target, _ = self.actor(batch.obs) dist = Categorical(logits=act_target) expected_policy_q = (q_t * dist.probs).sum(-1, keepdim=True) advantage = qa_t - expected_policy_q if self._policy_improvement_mode == "binary": actor_loss_coef = (advantage > 0).float() elif self._policy_improvement_mode == "exp": actor_loss_coef = ( (advantage / self._beta).exp().clamp(0, self._ratio_upper_bound) ) else: actor_loss_coef = 1.0 # effectively behavior cloning actor_loss = (-dist.log_prob(act) * actor_loss_coef).mean() # CQL loss/regularizer min_q_loss = (q_t.logsumexp(1) - qa_t).mean() loss = actor_loss + critic_loss + self._min_q_weight * min_q_loss loss.backward() self.optim.step() self._iter += 1 return { "loss": loss.item(), "loss/actor": actor_loss.item(), "loss/critic": critic_loss.item(), "loss/cql": min_q_loss.item(), }