Source code for tianshou.trainer.offline

import time
from collections import defaultdict
from typing import Callable, Dict, Optional, Union

import numpy as np
import tqdm

from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import BasePolicy
from tianshou.trainer import gather_info, test_episode
from tianshou.utils import BaseLogger, LazyLogger, MovAvg, tqdm_config


[docs]def offline_trainer( policy: BasePolicy, buffer: ReplayBuffer, test_collector: Collector, max_epoch: int, update_per_epoch: int, episode_per_test: int, batch_size: int, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None, resume_from_log: bool = False, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, logger: BaseLogger = LazyLogger(), verbose: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for offline trainer procedure. The "step" in offline trainer means a gradient step. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param Collector test_collector: the collector used for testing. :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching ``max_epoch`` if ``stop_fn`` is set. :param int update_per_epoch: the number of policy network updates, so-called gradient steps, per epoch. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function save_checkpoint_fn: a function to save training process, with the signature ``f(epoch: int, env_step: int, gradient_step: int) -> None``; you can save whatever you want. Because offline-RL doesn't have env_step, the env_step is always 0 here. :param bool resume_from_log: resume gradient_step and other metadata from existing tensorboard log. Default to False. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param function reward_metric: a function with signature ``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``, used in multi-agent RL. We need to return a single scalar for each episode's result to monitor training in the multi-agent RL setting. This function specifies what is the desired metric, e.g., the reward of agent 1 or the average reward over all agents. :param BaseLogger logger: A logger that logs statistics during updating/testing. Default to a logger that doesn't log anything. :param bool verbose: whether to print the information. Default to True. :return: See :func:`~tianshou.trainer.gather_info`. """ start_epoch, gradient_step = 0, 0 if resume_from_log: start_epoch, _, gradient_step = logger.restore_data() stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() test_collector.reset_stat() test_result = test_episode( policy, test_collector, test_fn, start_epoch, episode_per_test, logger, gradient_step, reward_metric ) best_epoch = start_epoch best_reward, best_reward_std = test_result["rew"], test_result["rew_std"] if save_fn: save_fn(policy) for epoch in range(1 + start_epoch, 1 + max_epoch): policy.train() with tqdm.trange(update_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config) as t: for _ in t: gradient_step += 1 losses = policy.update(batch_size, buffer) data = {"gradient_step": str(gradient_step)} for k in losses.keys(): stat[k].add(losses[k]) losses[k] = stat[k].get() data[k] = f"{losses[k]:.3f}" logger.log_update_data(losses, gradient_step) t.set_postfix(**data) # test test_result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test, logger, gradient_step, reward_metric ) rew, rew_std = test_result["rew"], test_result["rew_std"] if best_epoch < 0 or best_reward < rew: best_epoch, best_reward, best_reward_std = epoch, rew, rew_std if save_fn: save_fn(policy) logger.save_data(epoch, 0, gradient_step, save_checkpoint_fn) if verbose: print( f"Epoch #{epoch}: test_reward: {rew:.6f} ± {rew_std:.6f}, best_rew" f"ard: {best_reward:.6f} ± {best_reward_std:.6f} in #{best_epoch}" ) if stop_fn and stop_fn(best_reward): break return gather_info(start_time, None, test_collector, best_reward, best_reward_std)