Source code for tianshou.policy.modelfree.ppo

import torch
import numpy as np
from torch import nn
from typing import Any, Dict, List, Type, Optional

from tianshou.policy import A2CPolicy
from tianshou.data import Batch, ReplayBuffer, to_torch_as


[docs]class PPOPolicy(A2CPolicy): r"""Implementation of Proximal Policy Optimization. arXiv:1707.06347. :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.nn.Module critic: the critic network. (s -> V(s)) :param torch.optim.Optimizer optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :type dist_fn: Type[torch.distributions.Distribution] :param float discount_factor: in [0, 1]. Default to 0.99. :param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original paper. Default to 0.2. :param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c > 1 is a constant indicating the lower bound. Default to 5.0 (set None if you do not want to use it). :param bool value_clip: a parameter mentioned in arXiv:1811.02553 Sec. 4.1. Default to True. :param bool advantage_normalization: whether to do per mini-batch advantage normalization. Default to True. :param bool recompute_advantage: whether to recompute advantage every update repeat according to https://arxiv.org/pdf/2006.05990.pdf Sec. 3.5. Default to False. :param float vf_coef: weight for value loss. Default to 0.5. :param float ent_coef: weight for entropy loss. Default to 0.01. :param float max_grad_norm: clipping gradients in back propagation. Default to None. :param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation. Default to 0.95. :param bool reward_normalization: normalize estimated values to have std close to 1, also normalize the advantage to Normal(0, 1). Default to False. :param int max_batchsize: the maximum size of the batch when computing GAE, depends on the size of available memory and the memory cost of the model; should be as large as possible within the memory constraint. Default to 256. :param bool action_scaling: whether to map actions from range [-1, 1] to range [action_spaces.low, action_spaces.high]. Default to True. :param str action_bound_method: method to bound action to range [-1, 1], can be either "clip" (for simply clipping the action), "tanh" (for applying tanh squashing) for now, or empty string for no bounding. Default to "clip". :param Optional[gym.Space] action_space: env's action space, mandatory if you want to use option "action_scaling" or "action_bound_method". Default to None. :param lr_scheduler: a learning rate scheduler that adjusts the learning rate in optimizer in each policy.update(). Default to None (no lr_scheduler). :param bool deterministic_eval: whether to use deterministic action instead of stochastic action sampled by the policy. Default to False. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, actor: torch.nn.Module, critic: torch.nn.Module, optim: torch.optim.Optimizer, dist_fn: Type[torch.distributions.Distribution], eps_clip: float = 0.2, dual_clip: Optional[float] = None, value_clip: bool = False, advantage_normalization: bool = True, recompute_advantage: bool = False, **kwargs: Any, ) -> None: super().__init__(actor, critic, optim, dist_fn, **kwargs) self._eps_clip = eps_clip assert dual_clip is None or dual_clip > 1.0, \ "Dual-clip PPO parameter should greater than 1.0." self._dual_clip = dual_clip self._value_clip = value_clip if not self._rew_norm: assert not self._value_clip, \ "value clip is available only when `reward_normalization` is True" self._norm_adv = advantage_normalization self._recompute_adv = recompute_advantage
[docs] def process_fn( self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray ) -> Batch: if self._recompute_adv: # buffer input `buffer` and `indice` to be used in `learn()`. self._buffer, self._indice = buffer, indice batch = self._compute_returns(batch, buffer, indice) batch.act = to_torch_as(batch.act, batch.v_s) old_log_prob = [] with torch.no_grad(): for b in batch.split(self._batch, shuffle=False, merge_last=True): old_log_prob.append(self(b).dist.log_prob(b.act)) batch.logp_old = torch.cat(old_log_prob, dim=0) return batch
[docs] def learn( # type: ignore self, batch: Batch, batch_size: int, repeat: int, **kwargs: Any ) -> Dict[str, List[float]]: losses, clip_losses, vf_losses, ent_losses = [], [], [], [] for step in range(repeat): if self._recompute_adv and step > 0: batch = self._compute_returns(batch, self._buffer, self._indice) for b in batch.split(batch_size, merge_last=True): # calculate loss for actor dist = self(b).dist if self._norm_adv: mean, std = b.adv.mean(), b.adv.std() b.adv = (b.adv - mean) / std # per-batch norm ratio = (dist.log_prob(b.act) - b.logp_old).exp().float() ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1) surr1 = ratio * b.adv surr2 = ratio.clamp(1.0 - self._eps_clip, 1.0 + self._eps_clip) * b.adv if self._dual_clip: clip_loss = -torch.max( torch.min(surr1, surr2), self._dual_clip * b.adv ).mean() else: clip_loss = -torch.min(surr1, surr2).mean() # calculate loss for critic value = self.critic(b.obs).flatten() if self._value_clip: v_clip = b.v_s + (value - b.v_s).clamp( -self._eps_clip, self._eps_clip) vf1 = (b.returns - value).pow(2) vf2 = (b.returns - v_clip).pow(2) vf_loss = torch.max(vf1, vf2).mean() else: vf_loss = (b.returns - value).pow(2).mean() # calculate regularization and overall loss ent_loss = dist.entropy().mean() loss = clip_loss + self._weight_vf * vf_loss \ - self._weight_ent * ent_loss self.optim.zero_grad() loss.backward() if self._grad_norm: # clip large gradient nn.utils.clip_grad_norm_( list(self.actor.parameters()) + list(self.critic.parameters()), max_norm=self._grad_norm) self.optim.step() clip_losses.append(clip_loss.item()) vf_losses.append(vf_loss.item()) ent_losses.append(ent_loss.item()) losses.append(loss.item()) # update learning rate if lr_scheduler is given if self.lr_scheduler is not None: self.lr_scheduler.step() return { "loss": losses, "loss/clip": clip_losses, "loss/vf": vf_losses, "loss/ent": ent_losses, }