Source code for tianshou.utils.net.common

from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    no_type_check,
)

import numpy as np
import torch
from torch import nn

from tianshou.data.batch import Batch

ModuleType = Type[nn.Module]


[docs]def miniblock( input_size: int, output_size: int = 0, norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = None, linear_layer: Type[nn.Linear] = nn.Linear, ) -> List[nn.Module]: """Construct a miniblock with given input/output-size, norm layer and \ activation.""" layers: List[nn.Module] = [linear_layer(input_size, output_size)] if norm_layer is not None: layers += [norm_layer(output_size)] # type: ignore if activation is not None: layers += [activation()] return layers
[docs]class MLP(nn.Module): """Simple MLP backbone. Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ... * hidden_sizes[-1] * output_dim :param int input_dim: dimension of the input vector. :param int output_dim: dimension of the output vector. If set to 0, there is no final linear layer. :param hidden_sizes: shape of MLP passed in as a list, not including input_dim and output_dim. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same activation for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. :param device: which device to create this model on. Default to None. :param linear_layer: use this module as linear layer. Default to nn.Linear. :param bool flatten_input: whether to flatten input data. Default to True. """ def __init__( self, input_dim: int, output_dim: int = 0, hidden_sizes: Sequence[int] = (), norm_layer: Optional[Union[ModuleType, Sequence[ModuleType]]] = None, activation: Optional[Union[ModuleType, Sequence[ModuleType]]] = nn.ReLU, device: Optional[Union[str, int, torch.device]] = None, linear_layer: Type[nn.Linear] = nn.Linear, flatten_input: bool = True, ) -> None: super().__init__() self.device = device if norm_layer: if isinstance(norm_layer, list): assert len(norm_layer) == len(hidden_sizes) norm_layer_list = norm_layer else: norm_layer_list = [norm_layer for _ in range(len(hidden_sizes))] else: norm_layer_list = [None] * len(hidden_sizes) if activation: if isinstance(activation, list): assert len(activation) == len(hidden_sizes) activation_list = activation else: activation_list = [activation for _ in range(len(hidden_sizes))] else: activation_list = [None] * len(hidden_sizes) hidden_sizes = [input_dim] + list(hidden_sizes) model = [] for in_dim, out_dim, norm, activ in zip( hidden_sizes[:-1], hidden_sizes[1:], norm_layer_list, activation_list ): model += miniblock(in_dim, out_dim, norm, activ, linear_layer) if output_dim > 0: model += [linear_layer(hidden_sizes[-1], output_dim)] self.output_dim = output_dim or hidden_sizes[-1] self.model = nn.Sequential(*model) self.flatten_input = flatten_input
[docs] @no_type_check def forward(self, obs: Union[np.ndarray, torch.Tensor]) -> torch.Tensor: if self.device is not None: obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32) if self.flatten_input: obs = obs.flatten(1) return self.model(obs)
[docs]class Net(nn.Module): """Wrapper of MLP to support more specific DRL usage. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. :param state_shape: int or a sequence of int of the shape of state. :param action_shape: int or a sequence of int of the shape of action. :param hidden_sizes: shape of MLP passed in as a list. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same activation for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. :param device: specify the device when the network actually runs. Default to "cpu". :param bool softmax: whether to apply a softmax layer over the last layer's output. :param bool concat: whether the input shape is concatenated by state_shape and action_shape. If it is True, ``action_shape`` is not the output shape, but affects the input shape only. :param int num_atoms: in order to expand to the net of distributional RL. Default to 1 (not use). :param bool dueling_param: whether to use dueling network to calculate Q values (for Dueling DQN). If you want to use dueling option, you should pass a tuple of two dict (first for Q and second for V) stating self-defined arguments as stated in class:`~tianshou.utils.net.common.MLP`. Default to None. :param linear_layer: use this module as linear layer. Default to nn.Linear. .. seealso:: Please refer to :class:`~tianshou.utils.net.common.MLP` for more detailed explanation on the usage of activation, norm_layer, etc. You can also refer to :class:`~tianshou.utils.net.continuous.Actor`, :class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's suggested be used. """ def __init__( self, state_shape: Union[int, Sequence[int]], action_shape: Union[int, Sequence[int]] = 0, hidden_sizes: Sequence[int] = (), norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = nn.ReLU, device: Union[str, int, torch.device] = "cpu", softmax: bool = False, concat: bool = False, num_atoms: int = 1, dueling_param: Optional[Tuple[Dict[str, Any], Dict[str, Any]]] = None, linear_layer: Type[nn.Linear] = nn.Linear, ) -> None: super().__init__() self.device = device self.softmax = softmax self.num_atoms = num_atoms input_dim = int(np.prod(state_shape)) action_dim = int(np.prod(action_shape)) * num_atoms if concat: input_dim += action_dim self.use_dueling = dueling_param is not None output_dim = action_dim if not self.use_dueling and not concat else 0 self.model = MLP( input_dim, output_dim, hidden_sizes, norm_layer, activation, device, linear_layer ) self.output_dim = self.model.output_dim if self.use_dueling: # dueling DQN q_kwargs, v_kwargs = dueling_param # type: ignore q_output_dim, v_output_dim = 0, 0 if not concat: q_output_dim, v_output_dim = action_dim, num_atoms q_kwargs: Dict[str, Any] = { **q_kwargs, "input_dim": self.output_dim, "output_dim": q_output_dim, "device": self.device } v_kwargs: Dict[str, Any] = { **v_kwargs, "input_dim": self.output_dim, "output_dim": v_output_dim, "device": self.device } self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs) self.output_dim = self.Q.output_dim
[docs] def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Any = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: """Mapping: obs -> flatten (inside MLP)-> logits.""" logits = self.model(obs) bsz = logits.shape[0] if self.use_dueling: # Dueling DQN q, v = self.Q(logits), self.V(logits) if self.num_atoms > 1: q = q.view(bsz, -1, self.num_atoms) v = v.view(bsz, -1, self.num_atoms) logits = q - q.mean(dim=1, keepdim=True) + v elif self.num_atoms > 1: logits = logits.view(bsz, -1, self.num_atoms) if self.softmax: logits = torch.softmax(logits, dim=-1) return logits, state
[docs]class Recurrent(nn.Module): """Simple Recurrent network based on LSTM. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, layer_num: int, state_shape: Union[int, Sequence[int]], action_shape: Union[int, Sequence[int]], device: Union[str, int, torch.device] = "cpu", hidden_layer_size: int = 128, ) -> None: super().__init__() self.device = device self.nn = nn.LSTM( input_size=hidden_layer_size, hidden_size=hidden_layer_size, num_layers=layer_num, batch_first=True, ) self.fc1 = nn.Linear(int(np.prod(state_shape)), hidden_layer_size) self.fc2 = nn.Linear(hidden_layer_size, int(np.prod(action_shape)))
[docs] def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Optional[Dict[str, torch.Tensor]] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """Mapping: obs -> flatten -> logits. In the evaluation mode, `obs` should be with shape ``[bsz, dim]``; in the training mode, `obs` should be with shape ``[bsz, len, dim]``. See the code and comment for more detail. """ obs = torch.as_tensor( obs, device=self.device, dtype=torch.float32, ) # obs [bsz, len, dim] (training) or [bsz, dim] (evaluation) # In short, the tensor's shape in training phase is longer than which # in evaluation phase. if len(obs.shape) == 2: obs = obs.unsqueeze(-2) obs = self.fc1(obs) self.nn.flatten_parameters() if state is None: obs, (hidden, cell) = self.nn(obs) else: # we store the stack data in [bsz, len, ...] format # but pytorch rnn needs [len, bsz, ...] obs, (hidden, cell) = self.nn( obs, ( state["hidden"].transpose(0, 1).contiguous(), state["cell"].transpose(0, 1).contiguous() ) ) obs = self.fc2(obs[:, -1]) # please ensure the first dim is batch size: [bsz, len, ...] return obs, { "hidden": hidden.transpose(0, 1).detach(), "cell": cell.transpose(0, 1).detach() }
[docs]class ActorCritic(nn.Module): """An actor-critic network for parsing parameters. Using ``actor_critic.parameters()`` instead of set.union or list+list to avoid issue #449. :param nn.Module actor: the actor network. :param nn.Module critic: the critic network. """ def __init__(self, actor: nn.Module, critic: nn.Module) -> None: super().__init__() self.actor = actor self.critic = critic
[docs]class DataParallelNet(nn.Module): """DataParallel wrapper for training agent with multi-GPU. This class does only the conversion of input data type, from numpy array to torch's Tensor. If the input is a nested dictionary, the user should create a similar class to do the same thing. :param nn.Module net: the network to be distributed in different GPUs. """ def __init__(self, net: nn.Module) -> None: super().__init__() self.net = nn.DataParallel(net)
[docs] def forward(self, obs: Union[np.ndarray, torch.Tensor], *args: Any, **kwargs: Any) -> Tuple[Any, Any]: if not isinstance(obs, torch.Tensor): obs = torch.as_tensor(obs, dtype=torch.float32) return self.net(obs=obs.cuda(), *args, **kwargs)
[docs]class EnsembleLinear(nn.Module): """Linear Layer of Ensemble network. :param int ensemble_size: Number of subnets in the ensemble. :param int inp_feature: dimension of the input vector. :param int out_feature: dimension of the output vector. :param bool bias: whether to include an additive bias, default to be True. """ def __init__( self, ensemble_size: int, in_feature: int, out_feature: int, bias: bool = True, ) -> None: super().__init__() # To be consistent with PyTorch default initializer k = np.sqrt(1. / in_feature) weight_data = torch.rand((ensemble_size, in_feature, out_feature)) * 2 * k - k self.weight = nn.Parameter(weight_data, requires_grad=True) self.bias: Union[nn.Parameter, None] if bias: bias_data = torch.rand((ensemble_size, 1, out_feature)) * 2 * k - k self.bias = nn.Parameter(bias_data, requires_grad=True) else: self.bias = None
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: x = torch.matmul(x, self.weight) if self.bias is not None: x = x + self.bias return x
[docs]class BranchingNet(nn.Module): """Branching dual Q network. Network for the BranchingDQNPolicy, it uses a common network module, a value module and action "branches" one for each dimension.It allows for a linear scaling of Q-value the output w.r.t. the number of dimensions in the action space. For more info please refer to: arXiv:1711.08946. :param state_shape: int or a sequence of int of the shape of state. :param action_shape: int or a sequence of int of the shape of action. :param action_peer_branch: int or a sequence of int of the number of actions in each dimension. :param common_hidden_sizes: shape of the common MLP network passed in as a list. :param value_hidden_sizes: shape of the value MLP network passed in as a list. :param action_hidden_sizes: shape of the action MLP network passed in as a list. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same activation for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. :param device: specify the device when the network actually runs. Default to "cpu". :param bool softmax: whether to apply a softmax layer over the last layer's output. """ def __init__( self, state_shape: Union[int, Sequence[int]], num_branches: int = 0, action_per_branch: int = 2, common_hidden_sizes: List[int] = [], value_hidden_sizes: List[int] = [], action_hidden_sizes: List[int] = [], norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = nn.ReLU, device: Union[str, int, torch.device] = "cpu", ) -> None: super().__init__() self.device = device self.num_branches = num_branches self.action_per_branch = action_per_branch # common network common_input_dim = int(np.prod(state_shape)) common_output_dim = 0 self.common = MLP( common_input_dim, common_output_dim, common_hidden_sizes, norm_layer, activation, device ) # value network value_input_dim = common_hidden_sizes[-1] value_output_dim = 1 self.value = MLP( value_input_dim, value_output_dim, value_hidden_sizes, norm_layer, activation, device ) # action branching network action_input_dim = common_hidden_sizes[-1] action_output_dim = action_per_branch self.branches = nn.ModuleList( [ MLP( action_input_dim, action_output_dim, action_hidden_sizes, norm_layer, activation, device ) for _ in range(self.num_branches) ] )
[docs] def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Any = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: """Mapping: obs -> model -> logits.""" common_out = self.common(obs) value_out = self.value(common_out) value_out = torch.unsqueeze(value_out, 1) action_out = [] for b in self.branches: action_out.append(b(common_out)) action_scores = torch.stack(action_out, 1) action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True) logits = value_out + action_scores return logits, state
[docs]def get_dict_state_decorator( state_shape: Dict[str, Union[int, Sequence[int]]], keys: Sequence[str] ) -> Tuple[Callable, int]: """A helper function to make Net or equivalent classes (e.g. Actor, Critic) \ applicable to dict state. The first return item, ``decorator_fn``, will alter the implementation of forward function of the given class by preprocessing the observation. The preprocessing is basically flatten the observation and concatenate them based on the ``keys`` order. The batch dimension is preserved if presented. The result observation shape will be equal to ``new_state_shape``, the second return item. :param state_shape: A dictionary indicating each state's shape :param keys: A list of state's keys. The flatten observation will be according to \ this list order. :returns: a 2-items tuple ``decorator_fn`` and ``new_state_shape`` """ original_shape = state_shape flat_state_shapes = [] for k in keys: flat_state_shapes.append(int(np.prod(state_shape[k]))) new_state_shape = sum(flat_state_shapes) def preprocess_obs( obs: Union[Batch, dict, torch.Tensor, np.ndarray] ) -> torch.Tensor: if isinstance(obs, dict) or (isinstance(obs, Batch) and keys[0] in obs): if original_shape[keys[0]] == obs[keys[0]].shape: # No batch dim new_obs = torch.Tensor([obs[k] for k in keys]).flatten() # new_obs = torch.Tensor([obs[k] for k in keys]).reshape(1, -1) else: bsz = obs[keys[0]].shape[0] new_obs = torch.cat( [torch.Tensor(obs[k].reshape(bsz, -1)) for k in keys], dim=1 ) else: new_obs = torch.Tensor(obs) return new_obs @no_type_check def decorator_fn(net_class): class new_net_class(net_class): def forward( self, obs: Union[np.ndarray, torch.Tensor], *args, **kwargs, ) -> Any: return super().forward(preprocess_obs(obs), *args, **kwargs) return new_net_class return decorator_fn, new_state_shape