Source code for tianshou.utils.net.common

import torch
import numpy as np
from torch import nn
from typing import Any, Dict, List, Type, Tuple, Union, Optional, Sequence

ModuleType = Type[nn.Module]


[docs]def miniblock( input_size: int, output_size: int = 0, norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = None, ) -> List[nn.Module]: """Construct a miniblock with given input/output-size, norm layer and \ activation.""" layers: List[nn.Module] = [nn.Linear(input_size, output_size)] if norm_layer is not None: layers += [norm_layer(output_size)] # type: ignore if activation is not None: layers += [activation()] return layers
[docs]class MLP(nn.Module): """Simple MLP backbone. Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ... * hidden_sizes[-1] * output_dim :param int input_dim: dimension of the input vector. :param int output_dim: dimension of the output vector. If set to 0, there is no final linear layer. :param hidden_sizes: shape of MLP passed in as a list, not incluing input_dim and output_dim. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``, defaults to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same actvition for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. """ def __init__( self, input_dim: int, output_dim: int = 0, hidden_sizes: Sequence[int] = (), norm_layer: Optional[Union[ModuleType, Sequence[ModuleType]]] = None, activation: Optional[Union[ModuleType, Sequence[ModuleType]]] = nn.ReLU, device: Optional[Union[str, int, torch.device]] = None, ) -> None: super().__init__() self.device = device if norm_layer: if isinstance(norm_layer, list): assert len(norm_layer) == len(hidden_sizes) norm_layer_list = norm_layer else: norm_layer_list = [ norm_layer for _ in range(len(hidden_sizes))] else: norm_layer_list = [None] * len(hidden_sizes) if activation: if isinstance(activation, list): assert len(activation) == len(hidden_sizes) activation_list = activation else: activation_list = [ activation for _ in range(len(hidden_sizes))] else: activation_list = [None] * len(hidden_sizes) hidden_sizes = [input_dim] + list(hidden_sizes) model = [] for in_dim, out_dim, norm, activ in zip( hidden_sizes[:-1], hidden_sizes[1:], norm_layer_list, activation_list): model += miniblock(in_dim, out_dim, norm, activ) if output_dim > 0: model += [nn.Linear(hidden_sizes[-1], output_dim)] self.output_dim = output_dim or hidden_sizes[-1] self.model = nn.Sequential(*model)
[docs] def forward( self, x: Union[np.ndarray, torch.Tensor] ) -> torch.Tensor: x = torch.as_tensor( x, device=self.device, dtype=torch.float32) # type: ignore return self.model(x.flatten(1))
[docs]class Net(nn.Module): """Wrapper of MLP to support more specific DRL usage. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. :param state_shape: int or a sequence of int of the shape of state. :param action_shape: int or a sequence of int of the shape of action. :param hidden_sizes: shape of MLP passed in as a list. :param norm_layer: use which normalization before activation, e.g., ``nn.LayerNorm`` and ``nn.BatchNorm1d``, defaults to no normalization. You can also pass a list of normalization modules with the same length of hidden_sizes, to use different normalization module in different layers. Default to no normalization. :param activation: which activation to use after each layer, can be both the same actvition for all layers if passed in nn.Module, or different activation for different Modules if passed in a list. Default to nn.ReLU. :param device: specify the device when the network actually runs. Default to "cpu". :param bool softmax: whether to apply a softmax layer over the last layer's output. :param bool concat: whether the input shape is concatenated by state_shape and action_shape. If it is True, ``action_shape`` is not the output shape, but affects the input shape only. :param int num_atoms: in order to expand to the net of distributional RL, defaults to 1 (not use). :param bool dueling_param: whether to use dueling network to calculate Q values (for Dueling DQN). If you want to use dueling option, you should pass a tuple of two dict (first for Q and second for V) stating self-defined arguments as stated in class:`~tianshou.utils.net.common.MLP`. Defaults to None. .. seealso:: Please refer to :class:`~tianshou.utils.net.common.MLP` for more detailed explanation on the usage of activation, norm_layer, etc. You can also refer to :class:`~tianshou.utils.net.continuous.Actor`, :class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's suggested be used. """ def __init__( self, state_shape: Union[int, Sequence[int]], action_shape: Optional[Union[int, Sequence[int]]] = 0, hidden_sizes: Sequence[int] = (), norm_layer: Optional[ModuleType] = None, activation: Optional[ModuleType] = nn.ReLU, device: Union[str, int, torch.device] = "cpu", softmax: bool = False, concat: bool = False, num_atoms: int = 1, dueling_param: Optional[Tuple[Dict[str, Any], Dict[str, Any]]] = None, ) -> None: super().__init__() self.device = device self.softmax = softmax self.num_atoms = num_atoms input_dim = np.prod(state_shape) action_dim = np.prod(action_shape) * num_atoms if concat: input_dim += action_dim self.use_dueling = dueling_param is not None output_dim = action_dim if not self.use_dueling and not concat else 0 self.model = MLP(input_dim, output_dim, hidden_sizes, norm_layer, activation, device) self.output_dim = self.model.output_dim if self.use_dueling: # dueling DQN q_kwargs, v_kwargs = dueling_param # type: ignore q_output_dim, v_output_dim = 0, 0 if not concat: q_output_dim, v_output_dim = action_dim, num_atoms q_kwargs: Dict[str, Any] = { **q_kwargs, "input_dim": self.output_dim, "output_dim": q_output_dim} v_kwargs: Dict[str, Any] = { **v_kwargs, "input_dim": self.output_dim, "output_dim": v_output_dim} self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs) self.output_dim = self.Q.output_dim
[docs] def forward( self, s: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: """Mapping: s -> flatten (inside MLP)-> logits.""" logits = self.model(s) bsz = logits.shape[0] if self.use_dueling: # Dueling DQN q, v = self.Q(logits), self.V(logits) if self.num_atoms > 1: q = q.view(bsz, -1, self.num_atoms) v = v.view(bsz, -1, self.num_atoms) logits = q - q.mean(dim=1, keepdim=True) + v elif self.num_atoms > 1: logits = logits.view(bsz, -1, self.num_atoms) if self.softmax: logits = torch.softmax(logits, dim=-1) return logits, state
[docs]class Recurrent(nn.Module): """Simple Recurrent network based on LSTM. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, layer_num: int, state_shape: Union[int, Sequence[int]], action_shape: Union[int, Sequence[int]], device: Union[str, int, torch.device] = "cpu", hidden_layer_size: int = 128, ) -> None: super().__init__() self.device = device self.nn = nn.LSTM( input_size=hidden_layer_size, hidden_size=hidden_layer_size, num_layers=layer_num, batch_first=True, ) self.fc1 = nn.Linear(np.prod(state_shape), hidden_layer_size) self.fc2 = nn.Linear(hidden_layer_size, np.prod(action_shape))
[docs] def forward( self, s: Union[np.ndarray, torch.Tensor], state: Optional[Dict[str, torch.Tensor]] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: """Mapping: s -> flatten -> logits. In the evaluation mode, s should be with shape ``[bsz, dim]``; in the training mode, s should be with shape ``[bsz, len, dim]``. See the code and comment for more detail. """ s = torch.as_tensor( s, device=self.device, dtype=torch.float32) # type: ignore # s [bsz, len, dim] (training) or [bsz, dim] (evaluation) # In short, the tensor's shape in training phase is longer than which # in evaluation phase. if len(s.shape) == 2: s = s.unsqueeze(-2) s = self.fc1(s) self.nn.flatten_parameters() if state is None: s, (h, c) = self.nn(s) else: # we store the stack data in [bsz, len, ...] format # but pytorch rnn needs [len, bsz, ...] s, (h, c) = self.nn(s, (state["h"].transpose(0, 1).contiguous(), state["c"].transpose(0, 1).contiguous())) s = self.fc2(s[:, -1]) # please ensure the first dim is batch size: [bsz, len, ...] return s, {"h": h.transpose(0, 1).detach(), "c": c.transpose(0, 1).detach()}