Source code for tianshou.policy.modelfree.c51

import torch
import numpy as np
from typing import Any, Dict, Union, Optional

from tianshou.policy import DQNPolicy
from tianshou.data import Batch, ReplayBuffer, to_numpy


[docs]class C51Policy(DQNPolicy): """Implementation of Categorical Deep Q-Network. arXiv:1707.06887. :param torch.nn.Module model: a model following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.optim.Optimizer optim: a torch.optim for optimizing the model. :param float discount_factor: in [0, 1]. :param int num_atoms: the number of atoms in the support set of the value distribution, defaults to 51. :param float v_min: the value of the smallest atom in the support set, defaults to -10.0. :param float v_max: the value of the largest atom in the support set, defaults to 10.0. :param int estimation_step: greater than 1, the number of steps to look ahead. :param int target_update_freq: the target network update frequency (0 if you do not use the target network). :param bool reward_normalization: normalize the reward to Normal(0, 1), defaults to False. .. seealso:: Please refer to :class:`~tianshou.policy.DQNPolicy` for more detailed explanation. """ def __init__( self, model: torch.nn.Module, optim: torch.optim.Optimizer, discount_factor: float = 0.99, num_atoms: int = 51, v_min: float = -10.0, v_max: float = 10.0, estimation_step: int = 1, target_update_freq: int = 0, reward_normalization: bool = False, **kwargs: Any, ) -> None: super().__init__(model, optim, discount_factor, estimation_step, target_update_freq, reward_normalization, **kwargs) assert num_atoms > 1, "num_atoms should be greater than 1" assert v_min < v_max, "v_max should be larger than v_min" self._num_atoms = num_atoms self._v_min = v_min self._v_max = v_max self.support = torch.nn.Parameter( torch.linspace(self._v_min, self._v_max, self._num_atoms), requires_grad=False, ) self.delta_z = (v_max - v_min) / (num_atoms - 1) def _target_q( self, buffer: ReplayBuffer, indice: np.ndarray ) -> torch.Tensor: return self.support.repeat(len(indice), 1) # shape: [bsz, num_atoms]
[docs] def forward( self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, model: str = "model", input: str = "obs", **kwargs: Any, ) -> Batch: """Compute action over the given batch data. :return: A :class:`~tianshou.data.Batch` which has 2 keys: * ``act`` the action. * ``state`` the hidden state. .. seealso:: Please refer to :meth:`~tianshou.policy.DQNPolicy.forward` for more detailed explanation. """ model = getattr(self, model) obs = batch[input] obs_ = obs.obs if hasattr(obs, "obs") else obs dist, h = model(obs_, state=state, info=batch.info) q = (dist * self.support).sum(2) act: np.ndarray = to_numpy(q.max(dim=1)[1]) if hasattr(obs, "mask"): # some of actions are masked, they cannot be selected q_: np.ndarray = to_numpy(q) q_[~obs.mask] = -np.inf act = q_.argmax(axis=1) # add eps to act in training or testing phase if not self.updating and not np.isclose(self.eps, 0.0): for i in range(len(q)): if np.random.rand() < self.eps: q_ = np.random.rand(*q[i].shape) if hasattr(obs, "mask"): q_[~obs.mask[i]] = -np.inf act[i] = q_.argmax() return Batch(logits=dist, act=act, state=h)
def _target_dist(self, batch: Batch) -> torch.Tensor: if self._target: a = self(batch, input="obs_next").act next_dist = self( batch, model="model_old", input="obs_next" ).logits else: next_b = self(batch, input="obs_next") a = next_b.act next_dist = next_b.logits next_dist = next_dist[np.arange(len(a)), a, :] target_support = batch.returns.clamp(self._v_min, self._v_max) # An amazing trick for calculating the projection gracefully. # ref: https://github.com/ShangtongZhang/DeepRL target_dist = (1 - (target_support.unsqueeze(1) - self.support.view(1, -1, 1)).abs() / self.delta_z ).clamp(0, 1) * next_dist.unsqueeze(1) return target_dist.sum(-1)
[docs] def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]: if self._target and self._iter % self._freq == 0: self.sync_weight() self.optim.zero_grad() with torch.no_grad(): target_dist = self._target_dist(batch) weight = batch.pop("weight", 1.0) curr_dist = self(batch).logits act = batch.act curr_dist = curr_dist[np.arange(len(act)), act, :] cross_entropy = - (target_dist * torch.log(curr_dist + 1e-8)).sum(1) loss = (cross_entropy * weight).mean() # ref: https://github.com/Kaixhin/Rainbow/blob/master/agent.py L94-100 batch.weight = cross_entropy.detach() # prio-buffer loss.backward() self.optim.step() self._iter += 1 return {"loss": loss.item()}