Source code for tianshou.policy.modelfree.a2c

import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from typing import Any, Dict, List, Union, Optional, Callable

from tianshou.policy import PGPolicy
from tianshou.data import Batch, ReplayBuffer, to_torch_as, to_numpy


[docs]class A2CPolicy(PGPolicy): """Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783. :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.nn.Module critic: the critic network. (s -> V(s)) :param torch.optim.Optimizer optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :type dist_fn: Callable[[], torch.distributions.Distribution] :param float discount_factor: in [0, 1], defaults to 0.99. :param float vf_coef: weight for value loss, defaults to 0.5. :param float ent_coef: weight for entropy loss, defaults to 0.01. :param float max_grad_norm: clipping gradients in back propagation, defaults to None. :param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation, defaults to 0.95. :param bool reward_normalization: normalize the reward to Normal(0, 1), defaults to False. :param int max_batchsize: the maximum size of the batch when computing GAE, depends on the size of available memory and the memory cost of the model; should be as large as possible within the memory constraint; defaults to 256. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, actor: torch.nn.Module, critic: torch.nn.Module, optim: torch.optim.Optimizer, dist_fn: Callable[[], torch.distributions.Distribution], discount_factor: float = 0.99, vf_coef: float = 0.5, ent_coef: float = 0.01, max_grad_norm: Optional[float] = None, gae_lambda: float = 0.95, reward_normalization: bool = False, max_batchsize: int = 256, **kwargs: Any ) -> None: super().__init__(None, optim, dist_fn, discount_factor, **kwargs) self.actor = actor self.critic = critic assert 0.0 <= gae_lambda <= 1.0, "GAE lambda should be in [0, 1]." self._lambda = gae_lambda self._weight_vf = vf_coef self._weight_ent = ent_coef self._grad_norm = max_grad_norm self._batch = max_batchsize self._rew_norm = reward_normalization
[docs] def process_fn( self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray ) -> Batch: if self._lambda in [0.0, 1.0]: return self.compute_episodic_return( batch, None, gamma=self._gamma, gae_lambda=self._lambda) v_ = [] with torch.no_grad(): for b in batch.split(self._batch, shuffle=False, merge_last=True): v_.append(to_numpy(self.critic(b.obs_next))) v_ = np.concatenate(v_, axis=0) return self.compute_episodic_return( batch, v_, gamma=self._gamma, gae_lambda=self._lambda, rew_norm=self._rew_norm)
[docs] def forward( self, batch: Batch, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any ) -> Batch: """Compute action over the given batch data. :return: A :class:`~tianshou.data.Batch` which has 4 keys: * ``act`` the action. * ``logits`` the network's raw output. * ``dist`` the action distribution. * ``state`` the hidden state. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ logits, h = self.actor(batch.obs, state=state, info=batch.info) if isinstance(logits, tuple): dist = self.dist_fn(*logits) else: dist = self.dist_fn(logits) # type: ignore act = dist.sample() return Batch(logits=logits, act=act, state=h, dist=dist)
[docs] def learn( # type: ignore self, batch: Batch, batch_size: int, repeat: int, **kwargs: Any ) -> Dict[str, List[float]]: losses, actor_losses, vf_losses, ent_losses = [], [], [], [] for _ in range(repeat): for b in batch.split(batch_size, merge_last=True): self.optim.zero_grad() dist = self(b).dist v = self.critic(b.obs).flatten() a = to_torch_as(b.act, v) r = to_torch_as(b.returns, v) log_prob = dist.log_prob(a).reshape(len(r), -1).transpose(0, 1) a_loss = -(log_prob * (r - v).detach()).mean() vf_loss = F.mse_loss(r, v) # type: ignore ent_loss = dist.entropy().mean() loss = a_loss + self._weight_vf * vf_loss - \ self._weight_ent * ent_loss loss.backward() if self._grad_norm is not None: nn.utils.clip_grad_norm_( list(self.actor.parameters()) + list(self.critic.parameters()), max_norm=self._grad_norm, ) self.optim.step() actor_losses.append(a_loss.item()) vf_losses.append(vf_loss.item()) ent_losses.append(ent_loss.item()) losses.append(loss.item()) return { "loss": losses, "loss/actor": actor_losses, "loss/vf": vf_losses, "loss/ent": ent_losses, }