Source code for tianshou.exploration.random

import numpy as np
from typing import Union, Optional
from abc import ABC, abstractmethod


[docs]class BaseNoise(ABC, object): """The action noise base class.""" def __init__(self, **kwargs) -> None: super().__init__()
[docs] @abstractmethod def __call__(self, **kwargs) -> np.ndarray: """Generate new noise.""" raise NotImplementedError
[docs] def reset(self) -> None: """Reset to the initial state.""" pass
[docs]class GaussianNoise(BaseNoise): """Class for vanilla gaussian process, used for exploration in DDPG by default. """ def __init__(self, mu: float = 0.0, sigma: float = 1.0): super().__init__() self._mu = mu assert 0 <= sigma, 'noise std should not be negative' self._sigma = sigma
[docs] def __call__(self, size: tuple) -> np.ndarray: return np.random.normal(self._mu, self._sigma, size)
[docs]class OUNoise(BaseNoise): """Class for Ornstein-Uhlenbeck process, as used for exploration in DDPG. Usage: :: # init self.noise = OUNoise() # generate noise noise = self.noise(logits.shape, eps) For required parameters, you can refer to the stackoverflow page. However, our experiment result shows that (similar to OpenAI SpinningUp) using vanilla gaussian process has little difference from using the Ornstein-Uhlenbeck process. """ def __init__(self, mu: float = 0.0, sigma: float = 0.3, theta: float = 0.15, dt: float = 1e-2, x0: Optional[Union[float, np.ndarray]] = None ) -> None: super(BaseNoise, self).__init__() self._mu = mu self._alpha = theta * dt self._beta = sigma * np.sqrt(dt) self._x0 = x0 self.reset()
[docs] def __call__(self, size: tuple, mu: Optional[float] = None) -> np.ndarray: """Generate new noise. Return a ``numpy.ndarray`` which size is equal to ``size``. """ if self._x is None or self._x.shape != size: self._x = 0 if mu is None: mu = self._mu r = self._beta * np.random.normal(size=size) self._x = self._x + self._alpha * (mu - self._x) + r return self._x
[docs] def reset(self) -> None: """Reset to the initial state.""" self._x = self._x0