Source code for tianshou.policy.modelfree.ppo

import torch
import numpy as np
from torch import nn

from tianshou.data import Batch
from tianshou.policy import PGPolicy


[docs]class PPOPolicy(PGPolicy): r"""Implementation of Proximal Policy Optimization. arXiv:1707.06347 :param torch.nn.Module actor: the actor network following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param torch.nn.Module critic: the critic network. (s -> V(s)) :param torch.optim.Optimizer optim: the optimizer for actor and critic network. :param torch.distributions.Distribution dist_fn: for computing the action. :param float discount_factor: in [0, 1], defaults to 0.99. :param float max_grad_norm: clipping gradients in back propagation, defaults to ``None``. :param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original paper, defaults to 0.2. :param float vf_coef: weight for value loss, defaults to 0.5. :param float ent_coef: weight for entropy loss, defaults to 0.01. :param action_range: the action range (minimum, maximum). :type action_range: [float, float] :param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation, defaults to 0.95. :param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c > 1 is a constant indicating the lower bound, defaults to 5.0 (set ``None`` if you do not want to use it). :param bool value_clip: a parameter mentioned in arXiv:1811.02553 Sec. 4.1, defaults to ``True``. :param bool reward_normalization: normalize the returns to Normal(0, 1), defaults to ``True``. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__(self, actor, critic, optim, dist_fn, discount_factor=0.99, max_grad_norm=.5, eps_clip=.2, vf_coef=.5, ent_coef=.01, action_range=None, gae_lambda=0.95, dual_clip=5., value_clip=True, reward_normalization=True, **kwargs): super().__init__(None, None, dist_fn, discount_factor, **kwargs) self._max_grad_norm = max_grad_norm self._eps_clip = eps_clip self._w_vf = vf_coef self._w_ent = ent_coef self._range = action_range self.actor = actor self.critic = critic self.optim = optim self._batch = 64 assert 0 <= gae_lambda <= 1, 'GAE lambda should be in [0, 1].' self._lambda = gae_lambda assert dual_clip is None or dual_clip > 1, \ 'Dual-clip PPO parameter should greater than 1.' self._dual_clip = dual_clip self._value_clip = value_clip self._rew_norm = reward_normalization self.__eps = np.finfo(np.float32).eps.item()
[docs] def process_fn(self, batch, buffer, indice): if self._rew_norm: mean, std = batch.rew.mean(), batch.rew.std() if std > self.__eps: batch.rew = (batch.rew - mean) / std if self._lambda in [0, 1]: return self.compute_episodic_return( batch, None, gamma=self._gamma, gae_lambda=self._lambda) v_ = [] with torch.no_grad(): for b in batch.split(self._batch, permute=False): v_.append(self.critic(b.obs_next)) v_ = torch.cat(v_, dim=0).cpu().numpy() return self.compute_episodic_return( batch, v_, gamma=self._gamma, gae_lambda=self._lambda)
[docs] def forward(self, batch, state=None, **kwargs): """Compute action over the given batch data. :return: A :class:`~tianshou.data.Batch` which has 4 keys: * ``act`` the action. * ``logits`` the network's raw output. * ``dist`` the action distribution. * ``state`` the hidden state. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ logits, h = self.actor(batch.obs, state=state, info=batch.info) if isinstance(logits, tuple): dist = self.dist_fn(*logits) else: dist = self.dist_fn(logits) act = dist.sample() if self._range: act = act.clamp(self._range[0], self._range[1]) return Batch(logits=logits, act=act, state=h, dist=dist)
[docs] def learn(self, batch, batch_size=None, repeat=1, **kwargs): self._batch = batch_size losses, clip_losses, vf_losses, ent_losses = [], [], [], [] v = [] old_log_prob = [] with torch.no_grad(): for b in batch.split(batch_size, permute=False): v.append(self.critic(b.obs)) old_log_prob.append(self(b).dist.log_prob( torch.tensor(b.act, device=v[0].device))) batch.v = torch.cat(v, dim=0) # old value dev = batch.v.device batch.act = torch.tensor(batch.act, dtype=torch.float, device=dev) batch.logp_old = torch.cat(old_log_prob, dim=0) batch.returns = torch.tensor( batch.returns, dtype=torch.float, device=dev ).reshape(batch.v.shape) if self._rew_norm: mean, std = batch.returns.mean(), batch.returns.std() if std > self.__eps: batch.returns = (batch.returns - mean) / std batch.adv = batch.returns - batch.v if self._rew_norm: mean, std = batch.adv.mean(), batch.adv.std() if std > self.__eps: batch.adv = (batch.adv - mean) / std for _ in range(repeat): for b in batch.split(batch_size): dist = self(b).dist value = self.critic(b.obs) ratio = (dist.log_prob(b.act) - b.logp_old).exp().float() surr1 = ratio * b.adv surr2 = ratio.clamp( 1. - self._eps_clip, 1. + self._eps_clip) * b.adv if self._dual_clip: clip_loss = -torch.max(torch.min(surr1, surr2), self._dual_clip * b.adv).mean() else: clip_loss = -torch.min(surr1, surr2).mean() clip_losses.append(clip_loss.item()) if self._value_clip: v_clip = b.v + (value - b.v).clamp( -self._eps_clip, self._eps_clip) vf1 = (b.returns - value).pow(2) vf2 = (b.returns - v_clip).pow(2) vf_loss = .5 * torch.max(vf1, vf2).mean() else: vf_loss = .5 * (b.returns - value).pow(2).mean() vf_losses.append(vf_loss.item()) e_loss = dist.entropy().mean() ent_losses.append(e_loss.item()) loss = clip_loss + self._w_vf * vf_loss - self._w_ent * e_loss losses.append(loss.item()) self.optim.zero_grad() loss.backward() nn.utils.clip_grad_norm_(list( self.actor.parameters()) + list(self.critic.parameters()), self._max_grad_norm) self.optim.step() return { 'loss': losses, 'loss/clip': clip_losses, 'loss/vf': vf_losses, 'loss/ent': ent_losses, }