Source code for tianshou.policy.modelfree.qrdqn

import warnings
from dataclasses import dataclass
from typing import Any, Generic, TypeVar

import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F

from tianshou.data import Batch, ReplayBuffer
from tianshou.data.types import RolloutBatchProtocol
from tianshou.policy import DQNPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.dqn import DQNTrainingStats


[docs] @dataclass(kw_only=True) class QRDQNTrainingStats(DQNTrainingStats): pass
TQRDQNTrainingStats = TypeVar("TQRDQNTrainingStats", bound=QRDQNTrainingStats)
[docs] class QRDQNPolicy(DQNPolicy[TQRDQNTrainingStats], Generic[TQRDQNTrainingStats]): """Implementation of Quantile Regression Deep Q-Network. arXiv:1710.10044. :param model: a model following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param optim: a torch.optim for optimizing the model. :param action_space: Env's action space. :param discount_factor: in [0, 1]. :param num_quantiles: the number of quantile midpoints in the inverse cumulative distribution function of the value. :param estimation_step: the number of steps to look ahead. :param target_update_freq: the target network update frequency (0 if you do not use the target network). :param reward_normalization: normalize the **returns** to Normal(0, 1). TODO: rename to return_normalization? :param is_double: use double dqn. :param clip_loss_grad: clip the gradient of the loss in accordance with nature14236; this amounts to using the Huber loss instead of the MSE loss. :param observation_space: Env's observation space. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.DQNPolicy` for more detailed explanation. """ def __init__( self, *, model: torch.nn.Module, optim: torch.optim.Optimizer, action_space: gym.spaces.Discrete, discount_factor: float = 0.99, num_quantiles: int = 200, estimation_step: int = 1, target_update_freq: int = 0, reward_normalization: bool = False, is_double: bool = True, clip_loss_grad: bool = False, observation_space: gym.Space | None = None, lr_scheduler: TLearningRateScheduler | None = None, ) -> None: assert num_quantiles > 1, f"num_quantiles should be greater than 1 but got: {num_quantiles}" super().__init__( model=model, optim=optim, action_space=action_space, discount_factor=discount_factor, estimation_step=estimation_step, target_update_freq=target_update_freq, reward_normalization=reward_normalization, is_double=is_double, clip_loss_grad=clip_loss_grad, observation_space=observation_space, lr_scheduler=lr_scheduler, ) self.num_quantiles = num_quantiles tau = torch.linspace(0, 1, self.num_quantiles + 1) self.tau_hat = torch.nn.Parameter( ((tau[:-1] + tau[1:]) / 2).view(1, -1, 1), requires_grad=False, ) warnings.filterwarnings("ignore", message="Using a target size") def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor: obs_next_batch = Batch( obs=buffer[indices].obs_next, info=[None] * len(indices), ) # obs_next: s_{t+n} if self._target: act = self(obs_next_batch).act next_dist = self(obs_next_batch, model="model_old").logits else: next_batch = self(obs_next_batch) act = next_batch.act next_dist = next_batch.logits return next_dist[np.arange(len(act)), act, :]
[docs] def compute_q_value(self, logits: torch.Tensor, mask: np.ndarray | None) -> torch.Tensor: return super().compute_q_value(logits.mean(2), mask)
[docs] def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> TQRDQNTrainingStats: if self._target and self._iter % self.freq == 0: self.sync_weight() self.optim.zero_grad() weight = batch.pop("weight", 1.0) curr_dist = self(batch).logits act = batch.act curr_dist = curr_dist[np.arange(len(act)), act, :].unsqueeze(2) target_dist = batch.returns.unsqueeze(1) # calculate each element's difference between curr_dist and target_dist dist_diff = F.smooth_l1_loss(target_dist, curr_dist, reduction="none") huber_loss = ( (dist_diff * (self.tau_hat - (target_dist - curr_dist).detach().le(0.0).float()).abs()) .sum(-1) .mean(1) ) loss = (huber_loss * weight).mean() # ref: https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/ # blob/master/fqf_iqn_qrdqn/agent/qrdqn_agent.py L130 batch.weight = dist_diff.detach().abs().sum(-1).mean(1) # prio-buffer loss.backward() self.optim.step() self._iter += 1 return QRDQNTrainingStats(loss=loss.item()) # type: ignore[return-value]