Source code for tianshou.policy.modelfree.iqn

from dataclasses import dataclass
from typing import Any, Literal, TypeVar, cast

import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F

from tianshou.data import Batch, to_numpy
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import (
    ObsBatchProtocol,
    QuantileRegressionBatchProtocol,
    RolloutBatchProtocol,
)
from tianshou.policy import QRDQNPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.qrdqn import QRDQNTrainingStats


[docs] @dataclass(kw_only=True) class IQNTrainingStats(QRDQNTrainingStats): pass
TIQNTrainingStats = TypeVar("TIQNTrainingStats", bound=IQNTrainingStats)
[docs] class IQNPolicy(QRDQNPolicy[TIQNTrainingStats]): """Implementation of Implicit Quantile Network. arXiv:1806.06923. :param model: a model following the rules in :class:`~tianshou.policy.BasePolicy`. (s -> logits) :param optim: a torch.optim for optimizing the model. :param discount_factor: in [0, 1]. :param sample_size: the number of samples for policy evaluation. :param online_sample_size: the number of samples for online model in training. :param target_sample_size: the number of samples for target model in training. :param num_quantiles: the number of quantile midpoints in the inverse cumulative distribution function of the value. :param estimation_step: the number of steps to look ahead. :param target_update_freq: the target network update frequency (0 if you do not use the target network). :param reward_normalization: normalize the **returns** to Normal(0, 1). TODO: rename to return_normalization? :param is_double: use double dqn. :param clip_loss_grad: clip the gradient of the loss in accordance with nature14236; this amounts to using the Huber loss instead of the MSE loss. :param observation_space: Env's observation space. :param lr_scheduler: if not None, will be called in `policy.update()`. Please refer to :class:`~tianshou.policy.QRDQNPolicy` for more detailed explanation. """ def __init__( self, *, model: torch.nn.Module, optim: torch.optim.Optimizer, action_space: gym.spaces.Discrete, discount_factor: float = 0.99, sample_size: int = 32, online_sample_size: int = 8, target_sample_size: int = 8, num_quantiles: int = 200, estimation_step: int = 1, target_update_freq: int = 0, reward_normalization: bool = False, is_double: bool = True, clip_loss_grad: bool = False, observation_space: gym.Space | None = None, lr_scheduler: TLearningRateScheduler | None = None, ) -> None: assert sample_size > 1, f"sample_size should be greater than 1 but got: {sample_size}" assert ( online_sample_size > 1 ), f"online_sample_size should be greater than 1 but got: {online_sample_size}" assert ( target_sample_size > 1 ), f"target_sample_size should be greater than 1 but got: {target_sample_size}" super().__init__( model=model, optim=optim, action_space=action_space, discount_factor=discount_factor, num_quantiles=num_quantiles, estimation_step=estimation_step, target_update_freq=target_update_freq, reward_normalization=reward_normalization, is_double=is_double, clip_loss_grad=clip_loss_grad, observation_space=observation_space, lr_scheduler=lr_scheduler, ) self.sample_size = sample_size # for policy eval self.online_sample_size = online_sample_size self.target_sample_size = target_sample_size
[docs] def forward( self, batch: ObsBatchProtocol, state: dict | BatchProtocol | np.ndarray | None = None, model: Literal["model", "model_old"] = "model", **kwargs: Any, ) -> QuantileRegressionBatchProtocol: if model == "model_old": sample_size = self.target_sample_size elif self.training: sample_size = self.online_sample_size else: sample_size = self.sample_size model = getattr(self, model) obs = batch.obs # TODO: this seems very contrived! obs_next = obs.obs if hasattr(obs, "obs") else obs (logits, taus), hidden = model( obs_next, sample_size=sample_size, state=state, info=batch.info, ) q = self.compute_q_value(logits, getattr(obs, "mask", None)) if self.max_action_num is None: # type: ignore # TODO: see same thing in DQNPolicy! self.max_action_num = q.shape[1] act = to_numpy(q.max(dim=1)[1]) result = Batch(logits=logits, act=act, state=hidden, taus=taus) return cast(QuantileRegressionBatchProtocol, result)
[docs] def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> TIQNTrainingStats: if self._target and self._iter % self.freq == 0: self.sync_weight() self.optim.zero_grad() weight = batch.pop("weight", 1.0) action_batch = self(batch) curr_dist, taus = action_batch.logits, action_batch.taus act = batch.act curr_dist = curr_dist[np.arange(len(act)), act, :].unsqueeze(2) target_dist = batch.returns.unsqueeze(1) # calculate each element's difference between curr_dist and target_dist dist_diff = F.smooth_l1_loss(target_dist, curr_dist, reduction="none") huber_loss = ( ( dist_diff * (taus.unsqueeze(2) - (target_dist - curr_dist).detach().le(0.0).float()).abs() ) .sum(-1) .mean(1) ) loss = (huber_loss * weight).mean() # ref: https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/ # blob/master/fqf_iqn_qrdqn/agent/qrdqn_agent.py L130 batch.weight = dist_diff.detach().abs().sum(-1).mean(1) # prio-buffer loss.backward() self.optim.step() self._iter += 1 return IQNTrainingStats(loss=loss.item()) # type: ignore[return-value]