Source code for tianshou.policy.modelbased.psrl

from dataclasses import dataclass
from typing import Any, TypeVar, cast

import gymnasium as gym
import numpy as np
import torch

from tianshou.data import Batch
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import ActBatchProtocol, ObsBatchProtocol, RolloutBatchProtocol
from tianshou.policy import BasePolicy
from tianshou.policy.base import TLearningRateScheduler, TrainingStats


[docs] @dataclass(kw_only=True) class PSRLTrainingStats(TrainingStats): psrl_rew_mean: float = 0.0 psrl_rew_std: float = 0.0
TPSRLTrainingStats = TypeVar("TPSRLTrainingStats", bound=PSRLTrainingStats)
[docs] class PSRLModel: """Implementation of Posterior Sampling Reinforcement Learning Model. :param trans_count_prior: dirichlet prior (alphas), with shape (n_state, n_action, n_state). :param rew_mean_prior: means of the normal priors of rewards, with shape (n_state, n_action). :param rew_std_prior: standard deviations of the normal priors of rewards, with shape (n_state, n_action). :param discount_factor: in [0, 1]. :param epsilon: for precision control in value iteration. :param lr_scheduler: a learning rate scheduler that adjusts the learning rate in optimizer in each policy.update(). Default to None (no lr_scheduler). """ def __init__( self, trans_count_prior: np.ndarray, rew_mean_prior: np.ndarray, rew_std_prior: np.ndarray, discount_factor: float, epsilon: float, ) -> None: self.trans_count = trans_count_prior self.n_state, self.n_action = rew_mean_prior.shape self.rew_mean = rew_mean_prior self.rew_std = rew_std_prior self.rew_square_sum = np.zeros_like(rew_mean_prior) self.rew_std_prior = rew_std_prior self.discount_factor = discount_factor self.rew_count = np.full(rew_mean_prior.shape, epsilon) # no weight self.eps = epsilon self.policy: np.ndarray self.value = np.zeros(self.n_state) self.updated = False self.__eps = np.finfo(np.float32).eps.item()
[docs] def observe( self, trans_count: np.ndarray, rew_sum: np.ndarray, rew_square_sum: np.ndarray, rew_count: np.ndarray, ) -> None: """Add data into memory pool. For rewards, we have a normal prior at first. After we observed a reward for a given state-action pair, we use the mean value of our observations instead of the prior mean as the posterior mean. The standard deviations are in inverse proportion to the number of the corresponding observations. :param trans_count: the number of observations, with shape (n_state, n_action, n_state). :param rew_sum: total rewards, with shape (n_state, n_action). :param rew_square_sum: total rewards' squares, with shape (n_state, n_action). :param rew_count: the number of rewards, with shape (n_state, n_action). """ self.updated = False self.trans_count += trans_count sum_count = self.rew_count + rew_count self.rew_mean = (self.rew_mean * self.rew_count + rew_sum) / sum_count self.rew_square_sum += rew_square_sum raw_std2 = self.rew_square_sum / sum_count - self.rew_mean**2 self.rew_std = np.sqrt( 1 / (sum_count / (raw_std2 + self.__eps) + 1 / self.rew_std_prior**2), ) self.rew_count = sum_count
[docs] def sample_trans_prob(self) -> np.ndarray: return torch.distributions.Dirichlet(torch.from_numpy(self.trans_count)).sample().numpy()
[docs] def sample_reward(self) -> np.ndarray: return np.random.normal(self.rew_mean, self.rew_std)
[docs] def solve_policy(self) -> None: self.updated = True self.policy, self.value = self.value_iteration( self.sample_trans_prob(), self.sample_reward(), self.discount_factor, self.eps, self.value, )
[docs] @staticmethod def value_iteration( trans_prob: np.ndarray, rew: np.ndarray, discount_factor: float, eps: float, value: np.ndarray, ) -> tuple[np.ndarray, np.ndarray]: """Value iteration solver for MDPs. :param trans_prob: transition probabilities, with shape (n_state, n_action, n_state). :param rew: rewards, with shape (n_state, n_action). :param eps: for precision control. :param discount_factor: in [0, 1]. :param value: the initialize value of value array, with shape (n_state, ). :return: the optimal policy with shape (n_state, ). """ Q = rew + discount_factor * trans_prob.dot(value) new_value = Q.max(axis=1) while not np.allclose(new_value, value, eps): value = new_value Q = rew + discount_factor * trans_prob.dot(value) new_value = Q.max(axis=1) # this is to make sure if Q(s, a1) == Q(s, a2) -> choose a1/a2 randomly Q += eps * np.random.randn(*Q.shape) return Q.argmax(axis=1), new_value
def __call__( self, obs: np.ndarray, state: Any = None, info: Any = None, ) -> np.ndarray: if not self.updated: self.solve_policy() return self.policy[obs]
[docs] class PSRLPolicy(BasePolicy[TPSRLTrainingStats]): """Implementation of Posterior Sampling Reinforcement Learning. Reference: Strens M. A Bayesian framework for reinforcement learning [C] //ICML. 2000, 2000: 943-950. :param trans_count_prior: dirichlet prior (alphas), with shape (n_state, n_action, n_state). :param rew_mean_prior: means of the normal priors of rewards, with shape (n_state, n_action). :param rew_std_prior: standard deviations of the normal priors of rewards, with shape (n_state, n_action). :param action_space: Env's action_space. :param discount_factor: in [0, 1]. :param epsilon: for precision control in value iteration. :param add_done_loop: whether to add an extra self-loop for the terminal state in MDP. Default to False. :param observation_space: Env's observation space. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, *, trans_count_prior: np.ndarray, rew_mean_prior: np.ndarray, rew_std_prior: np.ndarray, action_space: gym.spaces.Discrete, discount_factor: float = 0.99, epsilon: float = 0.01, add_done_loop: bool = False, observation_space: gym.Space | None = None, lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( action_space=action_space, observation_space=observation_space, action_scaling=False, action_bound_method=None, lr_scheduler=lr_scheduler, ) assert 0.0 <= discount_factor <= 1.0, "discount factor should be in [0, 1]" self.model = PSRLModel( trans_count_prior, rew_mean_prior, rew_std_prior, discount_factor, epsilon, ) self._add_done_loop = add_done_loop
[docs] def forward( self, batch: ObsBatchProtocol, state: dict | BatchProtocol | np.ndarray | None = None, **kwargs: Any, ) -> ActBatchProtocol: """Compute action over the given batch data with PSRL model. :return: A :class:`~tianshou.data.Batch` with "act" key containing the action. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ assert isinstance(batch.obs, np.ndarray), "only support np.ndarray observation" # TODO: shouldn't the model output a state as well if state is passed (i.e. RNNs are involved)? act = self.model(batch.obs, state=state, info=batch.info) return cast(ActBatchProtocol, Batch(act=act))
[docs] def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> TPSRLTrainingStats: n_s, n_a = self.model.n_state, self.model.n_action trans_count = np.zeros((n_s, n_a, n_s)) rew_sum = np.zeros((n_s, n_a)) rew_square_sum = np.zeros((n_s, n_a)) rew_count = np.zeros((n_s, n_a)) for minibatch in batch.split(size=1): obs, act, obs_next = minibatch.obs, minibatch.act, minibatch.obs_next obs_next = cast(np.ndarray, obs_next) assert not isinstance(obs, BatchProtocol), "Observations cannot be Batches here" trans_count[obs, act, obs_next] += 1 rew_sum[obs, act] += minibatch.rew rew_square_sum[obs, act] += minibatch.rew**2 rew_count[obs, act] += 1 if self._add_done_loop and minibatch.done: # special operation for terminal states: add a self-loop trans_count[obs_next, :, obs_next] += 1 rew_count[obs_next, :] += 1 self.model.observe(trans_count, rew_sum, rew_square_sum, rew_count) return PSRLTrainingStats( # type: ignore[return-value] psrl_rew_mean=float(self.model.rew_mean.mean()), psrl_rew_std=float(self.model.rew_std.mean()), )