Source code for tianshou.policy.imitation.gail

from dataclasses import dataclass
from typing import Any, Literal, TypeVar

import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F

from tianshou.data import (
    ReplayBuffer,
    SequenceSummaryStats,
    to_numpy,
    to_torch,
)
from tianshou.data.types import LogpOldProtocol, RolloutBatchProtocol
from tianshou.policy import PPOPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.pg import TDistributionFunction
from tianshou.policy.modelfree.ppo import PPOTrainingStats


[docs] @dataclass(kw_only=True) class GailTrainingStats(PPOTrainingStats): disc_loss: SequenceSummaryStats acc_pi: SequenceSummaryStats acc_exp: SequenceSummaryStats
TGailTrainingStats = TypeVar("TGailTrainingStats", bound=GailTrainingStats)
[docs] class GAILPolicy(PPOPolicy[TGailTrainingStats]): r"""Implementation of Generative Adversarial Imitation Learning. arXiv:1606.03476. :param actor: the actor network following the rules in BasePolicy. (s -> logits) :param critic: the critic network. (s -> V(s)) :param optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :param action_space: env's action space :param expert_buffer: the replay buffer containing expert experience. :param disc_net: the discriminator network with input dim equals state dim plus action dim and output dim equals 1. :param disc_optim: the optimizer for the discriminator network. :param disc_update_num: the number of discriminator grad steps per model grad step. :param eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original paper. :param dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c > 1 is a constant indicating the lower bound. Set to None to disable dual-clip PPO. :param value_clip: a parameter mentioned in arXiv:1811.02553v3 Sec. 4.1. :param advantage_normalization: whether to do per mini-batch advantage normalization. :param recompute_advantage: whether to recompute advantage every update repeat according to https://arxiv.org/pdf/2006.05990.pdf Sec. 3.5. :param vf_coef: weight for value loss. :param ent_coef: weight for entropy loss. :param max_grad_norm: clipping gradients in back propagation. :param gae_lambda: in [0, 1], param for Generalized Advantage Estimation. :param max_batchsize: the maximum size of the batch when computing GAE. :param discount_factor: in [0, 1]. :param reward_normalization: normalize estimated values to have std close to 1. :param deterministic_eval: if True, use deterministic evaluation. :param observation_space: the space of the observation. :param action_scaling: if True, scale the action from [-1, 1] to the range of action_space. Only used if the action_space is continuous. :param action_bound_method: method to bound action to range [-1, 1]. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.PPOPolicy` for more detailed explanation. """ def __init__( self, *, actor: torch.nn.Module, critic: torch.nn.Module, optim: torch.optim.Optimizer, dist_fn: TDistributionFunction, action_space: gym.Space, expert_buffer: ReplayBuffer, disc_net: torch.nn.Module, disc_optim: torch.optim.Optimizer, disc_update_num: int = 4, eps_clip: float = 0.2, dual_clip: float | None = None, value_clip: bool = False, advantage_normalization: bool = True, recompute_advantage: bool = False, vf_coef: float = 0.5, ent_coef: float = 0.01, max_grad_norm: float | None = None, gae_lambda: float = 0.95, max_batchsize: int = 256, discount_factor: float = 0.99, # TODO: rename to return_normalization? reward_normalization: bool = False, deterministic_eval: bool = False, observation_space: gym.Space | None = None, action_scaling: bool = True, action_bound_method: Literal["clip", "tanh"] | None = "clip", lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( actor=actor, critic=critic, optim=optim, dist_fn=dist_fn, action_space=action_space, eps_clip=eps_clip, dual_clip=dual_clip, value_clip=value_clip, advantage_normalization=advantage_normalization, recompute_advantage=recompute_advantage, vf_coef=vf_coef, ent_coef=ent_coef, max_grad_norm=max_grad_norm, gae_lambda=gae_lambda, max_batchsize=max_batchsize, discount_factor=discount_factor, reward_normalization=reward_normalization, deterministic_eval=deterministic_eval, observation_space=observation_space, action_scaling=action_scaling, action_bound_method=action_bound_method, lr_scheduler=lr_scheduler, ) self.disc_net = disc_net self.disc_optim = disc_optim self.disc_update_num = disc_update_num self.expert_buffer = expert_buffer self.action_dim = actor.output_dim
[docs] def process_fn( self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray, ) -> LogpOldProtocol: """Pre-process the data from the provided replay buffer. Used in :meth:`update`. Check out :ref:`process_fn` for more information. """ # update reward with torch.no_grad(): batch.rew = to_numpy(-F.logsigmoid(-self.disc(batch)).flatten()) return super().process_fn(batch, buffer, indices)
[docs] def disc(self, batch: RolloutBatchProtocol) -> torch.Tensor: obs = to_torch(batch.obs, device=self.disc_net.device) act = to_torch(batch.act, device=self.disc_net.device) return self.disc_net(torch.cat([obs, act], dim=1))
[docs] def learn( # type: ignore self, batch: RolloutBatchProtocol, batch_size: int | None, repeat: int, **kwargs: Any, ) -> TGailTrainingStats: # update discriminator losses = [] acc_pis = [] acc_exps = [] bsz = len(batch) // self.disc_update_num for b in batch.split(bsz, merge_last=True): logits_pi = self.disc(b) exp_b = self.expert_buffer.sample(bsz)[0] logits_exp = self.disc(exp_b) loss_pi = -F.logsigmoid(-logits_pi).mean() loss_exp = -F.logsigmoid(logits_exp).mean() loss_disc = loss_pi + loss_exp self.disc_optim.zero_grad() loss_disc.backward() self.disc_optim.step() losses.append(loss_disc.item()) acc_pis.append((logits_pi < 0).float().mean().item()) acc_exps.append((logits_exp > 0).float().mean().item()) # update policy ppo_loss_stat = super().learn(batch, batch_size, repeat, **kwargs) disc_losses_summary = SequenceSummaryStats.from_sequence(losses) acc_pi_summary = SequenceSummaryStats.from_sequence(acc_pis) acc_exps_summary = SequenceSummaryStats.from_sequence(acc_exps) return GailTrainingStats( # type: ignore[return-value] **ppo_loss_stat.__dict__, disc_loss=disc_losses_summary, acc_pi=acc_pi_summary, acc_exp=acc_exps_summary, )