Source code for tianshou.policy.modelfree.trpo

import warnings
from dataclasses import dataclass
from typing import Any, Literal, TypeVar

import gymnasium as gym
import torch
import torch.nn.functional as F
from torch.distributions import kl_divergence

from tianshou.data import Batch, SequenceSummaryStats
from tianshou.policy import NPGPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.npg import NPGTrainingStats
from tianshou.policy.modelfree.pg import TDistFnDiscrOrCont
from tianshou.utils.net.continuous import ActorProb, Critic
from tianshou.utils.net.discrete import Actor as DiscreteActor
from tianshou.utils.net.discrete import Critic as DiscreteCritic


[docs] @dataclass(kw_only=True) class TRPOTrainingStats(NPGTrainingStats): step_size: SequenceSummaryStats
TTRPOTrainingStats = TypeVar("TTRPOTrainingStats", bound=TRPOTrainingStats)
[docs] class TRPOPolicy(NPGPolicy[TTRPOTrainingStats]): """Implementation of Trust Region Policy Optimization. arXiv:1502.05477. :param actor: the actor network following the rules: If `self.action_type == "discrete"`: (`s_B` ->`action_values_BA`). If `self.action_type == "continuous"`: (`s_B` -> `dist_input_BD`). :param critic: the critic network. (s -> V(s)) :param optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :param action_space: env's action space :param max_kl: max kl-divergence used to constrain each actor network update. :param backtrack_coeff: Coefficient to be multiplied by step size when constraints are not met. :param max_backtracks: Max number of backtracking times in linesearch. :param optim_critic_iters: Number of times to optimize critic network per update. :param actor_step_size: step size for actor update in natural gradient direction. :param advantage_normalization: whether to do per mini-batch advantage normalization. :param gae_lambda: in [0, 1], param for Generalized Advantage Estimation. :param max_batchsize: the maximum size of the batch when computing GAE. :param discount_factor: in [0, 1]. :param reward_normalization: normalize estimated values to have std close to 1. :param deterministic_eval: if True, use deterministic evaluation. :param observation_space: the space of the observation. :param action_scaling: if True, scale the action from [-1, 1] to the range of action_space. Only used if the action_space is continuous. :param action_bound_method: method to bound action to range [-1, 1]. :param lr_scheduler: if not None, will be called in `policy.update()`. """ def __init__( self, *, actor: torch.nn.Module | ActorProb | DiscreteActor, critic: torch.nn.Module | Critic | DiscreteCritic, optim: torch.optim.Optimizer, dist_fn: TDistFnDiscrOrCont, action_space: gym.Space, max_kl: float = 0.01, backtrack_coeff: float = 0.8, max_backtracks: int = 10, optim_critic_iters: int = 5, actor_step_size: float = 0.5, advantage_normalization: bool = True, gae_lambda: float = 0.95, max_batchsize: int = 256, discount_factor: float = 0.99, # TODO: rename to return_normalization? reward_normalization: bool = False, deterministic_eval: bool = False, observation_space: gym.Space | None = None, action_scaling: bool = True, action_bound_method: Literal["clip", "tanh"] | None = "clip", lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( actor=actor, critic=critic, optim=optim, dist_fn=dist_fn, action_space=action_space, optim_critic_iters=optim_critic_iters, actor_step_size=actor_step_size, advantage_normalization=advantage_normalization, gae_lambda=gae_lambda, max_batchsize=max_batchsize, discount_factor=discount_factor, reward_normalization=reward_normalization, deterministic_eval=deterministic_eval, observation_space=observation_space, action_scaling=action_scaling, action_bound_method=action_bound_method, lr_scheduler=lr_scheduler, ) self.max_backtracks = max_backtracks self.max_kl = max_kl self.backtrack_coeff = backtrack_coeff
[docs] def learn( # type: ignore self, batch: Batch, batch_size: int | None, repeat: int, **kwargs: Any, ) -> TTRPOTrainingStats: actor_losses, vf_losses, step_sizes, kls = [], [], [], [] split_batch_size = batch_size or -1 for _ in range(repeat): for minibatch in batch.split(split_batch_size, merge_last=True): # optimize actor # direction: calculate villia gradient dist = self(minibatch).dist # TODO could come from batch ratio = (dist.log_prob(minibatch.act) - minibatch.logp_old).exp().float() ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1) actor_loss = -(ratio * minibatch.adv).mean() flat_grads = self._get_flat_grad(actor_loss, self.actor, retain_graph=True).detach() # direction: calculate natural gradient with torch.no_grad(): old_dist = self(minibatch).dist kl = kl_divergence(old_dist, dist).mean() # calculate first order gradient of kl with respect to theta flat_kl_grad = self._get_flat_grad(kl, self.actor, create_graph=True) search_direction = -self._conjugate_gradients(flat_grads, flat_kl_grad, nsteps=10) # stepsize: calculate max stepsize constrained by kl bound step_size = torch.sqrt( 2 * self.max_kl / (search_direction * self._MVP(search_direction, flat_kl_grad)).sum( 0, keepdim=True, ), ) # stepsize: linesearch stepsize with torch.no_grad(): flat_params = torch.cat( [param.data.view(-1) for param in self.actor.parameters()], ) for i in range(self.max_backtracks): new_flat_params = flat_params + step_size * search_direction self._set_from_flat_params(self.actor, new_flat_params) # calculate kl and if in bound, loss actually down new_dist = self(minibatch).dist new_dratio = ( (new_dist.log_prob(minibatch.act) - minibatch.logp_old).exp().float() ) new_dratio = new_dratio.reshape(new_dratio.size(0), -1).transpose(0, 1) new_actor_loss = -(new_dratio * minibatch.adv).mean() kl = kl_divergence(old_dist, new_dist).mean() if kl < self.max_kl and new_actor_loss < actor_loss: if i > 0: warnings.warn(f"Backtracking to step {i}.") break if i < self.max_backtracks - 1: step_size = step_size * self.backtrack_coeff else: self._set_from_flat_params(self.actor, new_flat_params) step_size = torch.tensor([0.0]) warnings.warn( "Line search failed! It seems hyperparamters" " are poor and need to be changed.", ) # optimize critic # TODO: remove type-ignore once the top-level type-ignore is removed for _ in range(self.optim_critic_iters): # type: ignore value = self.critic(minibatch.obs).flatten() vf_loss = F.mse_loss(minibatch.returns, value) self.optim.zero_grad() vf_loss.backward() self.optim.step() actor_losses.append(actor_loss.item()) vf_losses.append(vf_loss.item()) step_sizes.append(step_size.item()) kls.append(kl.item()) actor_loss_summary_stat = SequenceSummaryStats.from_sequence(actor_losses) vf_loss_summary_stat = SequenceSummaryStats.from_sequence(vf_losses) kl_summary_stat = SequenceSummaryStats.from_sequence(kls) step_size_stat = SequenceSummaryStats.from_sequence(step_sizes) return TRPOTrainingStats( # type: ignore[return-value] actor_loss=actor_loss_summary_stat, vf_loss=vf_loss_summary_stat, kl=kl_summary_stat, step_size=step_size_stat, )