Source code for tianshou.policy.imitation.gail

from dataclasses import dataclass
from typing import Any, Literal, TypeVar

import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F

from tianshou.data import (
    ReplayBuffer,
    SequenceSummaryStats,
    to_numpy,
    to_torch,
)
from tianshou.data.types import LogpOldProtocol, RolloutBatchProtocol
from tianshou.policy import PPOPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.pg import TDistFnDiscrOrCont
from tianshou.policy.modelfree.ppo import PPOTrainingStats
from tianshou.utils.net.continuous import ActorProb, Critic
from tianshou.utils.net.discrete import Actor as DiscreteActor
from tianshou.utils.net.discrete import Critic as DiscreteCritic


[docs] @dataclass(kw_only=True) class GailTrainingStats(PPOTrainingStats): disc_loss: SequenceSummaryStats acc_pi: SequenceSummaryStats acc_exp: SequenceSummaryStats
TGailTrainingStats = TypeVar("TGailTrainingStats", bound=GailTrainingStats)
[docs] class GAILPolicy(PPOPolicy[TGailTrainingStats]): r"""Implementation of Generative Adversarial Imitation Learning. arXiv:1606.03476. :param actor: the actor network following the rules: If `self.action_type == "discrete"`: (`s_B` ->`action_values_BA`). If `self.action_type == "continuous"`: (`s_B` -> `dist_input_BD`). :param critic: the critic network. (s -> V(s)) :param optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :param action_space: env's action space :param expert_buffer: the replay buffer containing expert experience. :param disc_net: the discriminator network with input dim equals state dim plus action dim and output dim equals 1. :param disc_optim: the optimizer for the discriminator network. :param disc_update_num: the number of discriminator grad steps per model grad step. :param eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original paper. :param dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c > 1 is a constant indicating the lower bound. Set to None to disable dual-clip PPO. :param value_clip: a parameter mentioned in arXiv:1811.02553v3 Sec. 4.1. :param advantage_normalization: whether to do per mini-batch advantage normalization. :param recompute_advantage: whether to recompute advantage every update repeat according to https://arxiv.org/pdf/2006.05990.pdf Sec. 3.5. :param vf_coef: weight for value loss. :param ent_coef: weight for entropy loss. :param max_grad_norm: clipping gradients in back propagation. :param gae_lambda: in [0, 1], param for Generalized Advantage Estimation. :param max_batchsize: the maximum size of the batch when computing GAE. :param discount_factor: in [0, 1]. :param reward_normalization: normalize estimated values to have std close to 1. :param deterministic_eval: if True, use deterministic evaluation. :param observation_space: the space of the observation. :param action_scaling: if True, scale the action from [-1, 1] to the range of action_space. Only used if the action_space is continuous. :param action_bound_method: method to bound action to range [-1, 1]. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.PPOPolicy` for more detailed explanation. """ def __init__( self, *, actor: torch.nn.Module | ActorProb | DiscreteActor, critic: torch.nn.Module | Critic | DiscreteCritic, optim: torch.optim.Optimizer, dist_fn: TDistFnDiscrOrCont, action_space: gym.Space, expert_buffer: ReplayBuffer, disc_net: torch.nn.Module, disc_optim: torch.optim.Optimizer, disc_update_num: int = 4, eps_clip: float = 0.2, dual_clip: float | None = None, value_clip: bool = False, advantage_normalization: bool = True, recompute_advantage: bool = False, vf_coef: float = 0.5, ent_coef: float = 0.01, max_grad_norm: float | None = None, gae_lambda: float = 0.95, max_batchsize: int = 256, discount_factor: float = 0.99, # TODO: rename to return_normalization? reward_normalization: bool = False, deterministic_eval: bool = False, observation_space: gym.Space | None = None, action_scaling: bool = True, action_bound_method: Literal["clip", "tanh"] | None = "clip", lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( actor=actor, critic=critic, optim=optim, dist_fn=dist_fn, action_space=action_space, eps_clip=eps_clip, dual_clip=dual_clip, value_clip=value_clip, advantage_normalization=advantage_normalization, recompute_advantage=recompute_advantage, vf_coef=vf_coef, ent_coef=ent_coef, max_grad_norm=max_grad_norm, gae_lambda=gae_lambda, max_batchsize=max_batchsize, discount_factor=discount_factor, reward_normalization=reward_normalization, deterministic_eval=deterministic_eval, observation_space=observation_space, action_scaling=action_scaling, action_bound_method=action_bound_method, lr_scheduler=lr_scheduler, ) self.disc_net = disc_net self.disc_optim = disc_optim self.disc_update_num = disc_update_num self.expert_buffer = expert_buffer self.action_dim = actor.output_dim
[docs] def process_fn( self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray, ) -> LogpOldProtocol: """Pre-process the data from the provided replay buffer. Used in :meth:`update`. Check out :ref:`process_fn` for more information. """ # update reward with torch.no_grad(): batch.rew = to_numpy(-F.logsigmoid(-self.disc(batch)).flatten()) return super().process_fn(batch, buffer, indices)
[docs] def disc(self, batch: RolloutBatchProtocol) -> torch.Tensor: obs = to_torch(batch.obs, device=self.disc_net.device) act = to_torch(batch.act, device=self.disc_net.device) return self.disc_net(torch.cat([obs, act], dim=1))
[docs] def learn( # type: ignore self, batch: RolloutBatchProtocol, batch_size: int | None, repeat: int, **kwargs: Any, ) -> TGailTrainingStats: # update discriminator losses = [] acc_pis = [] acc_exps = [] bsz = len(batch) // self.disc_update_num for b in batch.split(bsz, merge_last=True): logits_pi = self.disc(b) exp_b = self.expert_buffer.sample(bsz)[0] logits_exp = self.disc(exp_b) loss_pi = -F.logsigmoid(-logits_pi).mean() loss_exp = -F.logsigmoid(logits_exp).mean() loss_disc = loss_pi + loss_exp self.disc_optim.zero_grad() loss_disc.backward() self.disc_optim.step() losses.append(loss_disc.item()) acc_pis.append((logits_pi < 0).float().mean().item()) acc_exps.append((logits_exp > 0).float().mean().item()) # update policy ppo_loss_stat = super().learn(batch, batch_size, repeat, **kwargs) disc_losses_summary = SequenceSummaryStats.from_sequence(losses) acc_pi_summary = SequenceSummaryStats.from_sequence(acc_pis) acc_exps_summary = SequenceSummaryStats.from_sequence(acc_exps) return GailTrainingStats( # type: ignore[return-value] **ppo_loss_stat.__dict__, disc_loss=disc_losses_summary, acc_pi=acc_pi_summary, acc_exp=acc_exps_summary, )